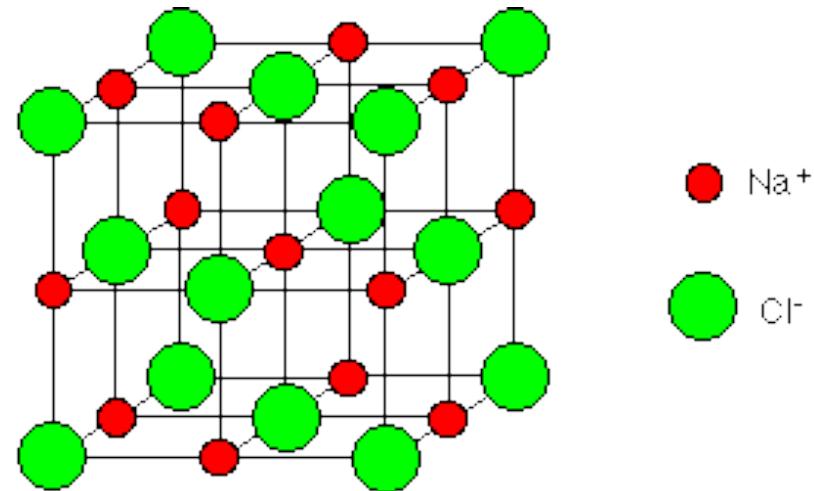




NaCl

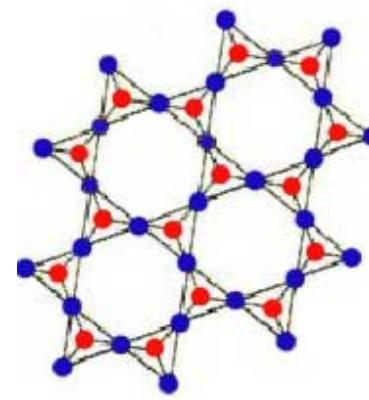


## Chapter 3: Crystal Structure of Solids

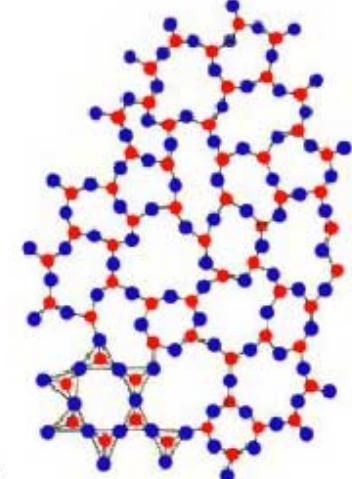


Quartz Crystal

Crystalline  $\text{SiO}_2$   
(Quartz)



Amorphous  $\text{SiO}_2$   
(Glass)



# Why do we care about crystal structures, directions, planes ?

Physical properties of materials depend on the geometry of crystals

## ISSUES TO ADDRESS...

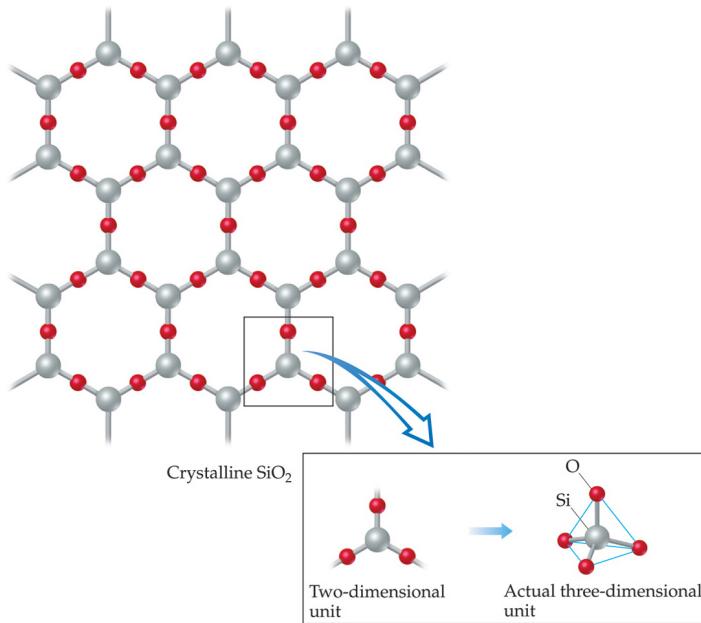
- How do atoms assemble into solid structures?  
(for now, focus on metals)
- How does the density of a material depend on its structure?
- When do material properties vary with the sample (i.e., part) orientation?

# Structure of Solids

**SOLID:** Smth. which is dimensionally stable, i.e., has a volume of its own

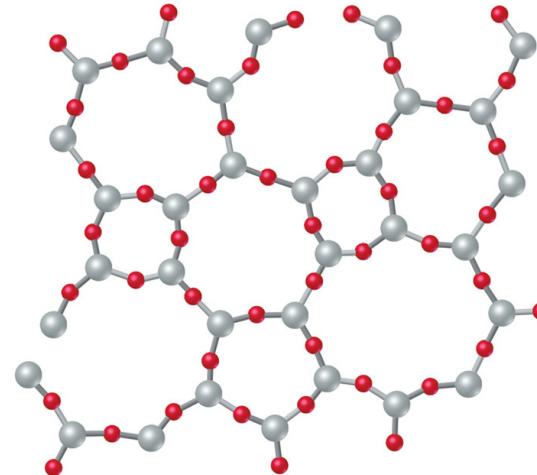
## Crystalline

Particles are in highly ordered arrangement.



## Amorphous (non crystalline)

No particular order in the arrangement of particles.



# Atomic Arrangement

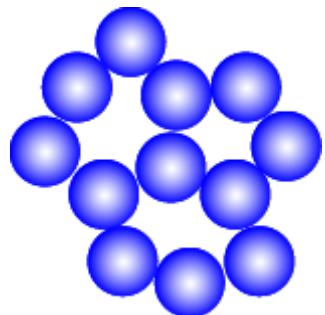
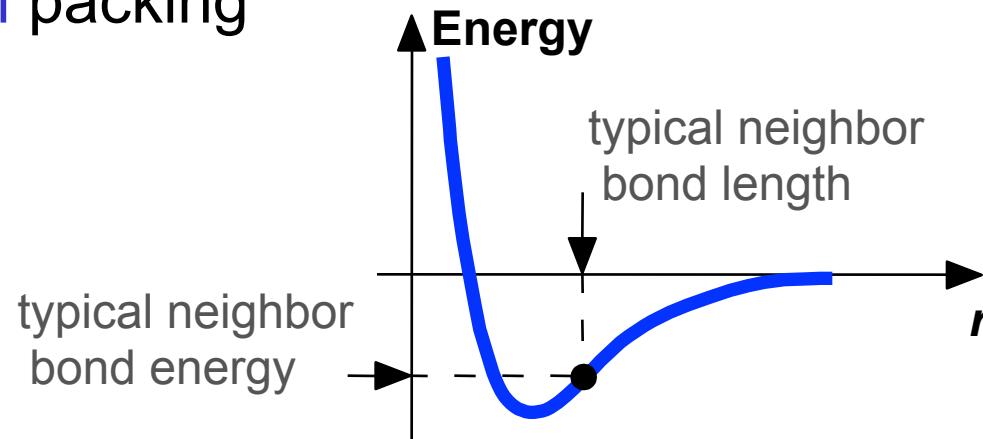
**SOLID:** Smth. which is dimensionally stable, i.e., has a volume of its own

## classifications of solids by atomic arrangement

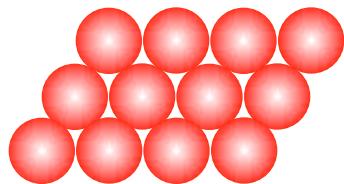
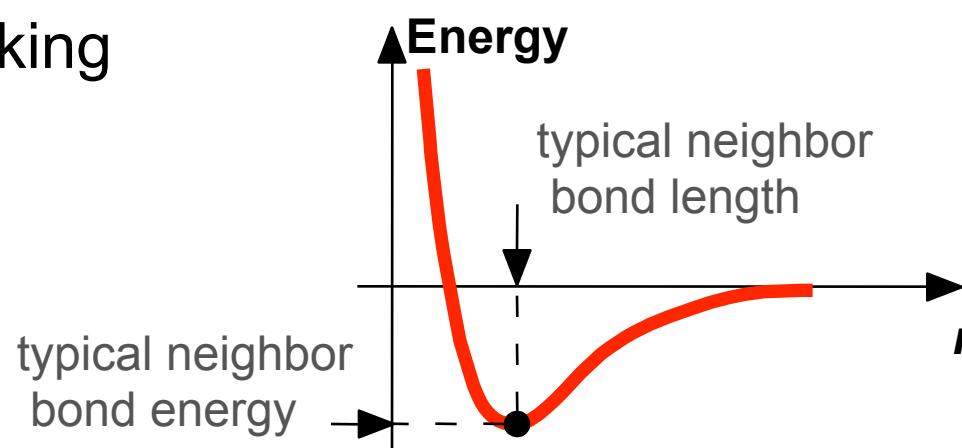
|                           | ordered                         | disordered                  |
|---------------------------|---------------------------------|-----------------------------|
| <b>atomic arrangement</b> | regular                         | random*                     |
| <b>order</b>              | long-range                      | short-range                 |
| <b>name</b>               | <b>crystalline</b><br>“crystal” | <b>amorphous</b><br>“glass” |

# Energy and Packing

- Non dense, **random** packing



- Dense, **ordered** packing



COOLING

Dense, ordered packed structures tend to have lower energies.

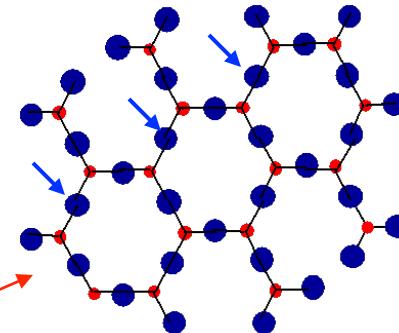


# MATERIALS AND PACKING

## Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of:
  - metals
  - many ceramics
  - some polymers

LONG RANGE ORDER



crystalline  $\text{SiO}_2$

Adapted from Fig. 3.18(a),  
*Callister 6e.*

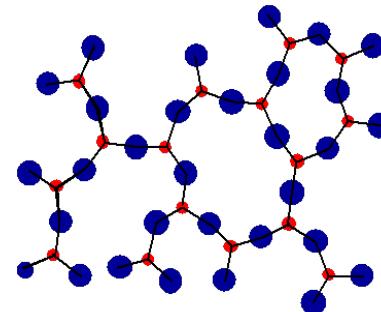
• Si      • Oxygen

## Noncrystalline materials...

- atoms have no periodic packing
- occurs for:
  - complex structures
  - rapid cooling

"Amorphous" = Noncrystalline

SHORT RANGE ORDER



noncrystalline  $\text{SiO}_2$

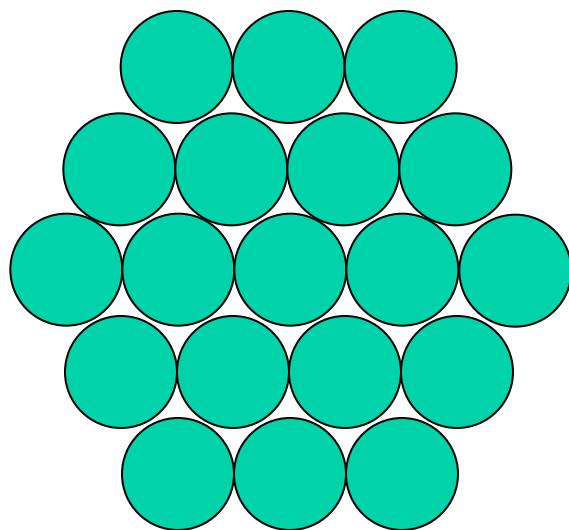
Adapted from Fig. 3.18(b),  
*Callister 6e.*



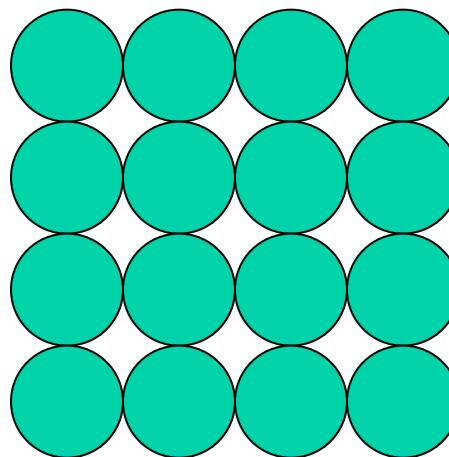
# Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions



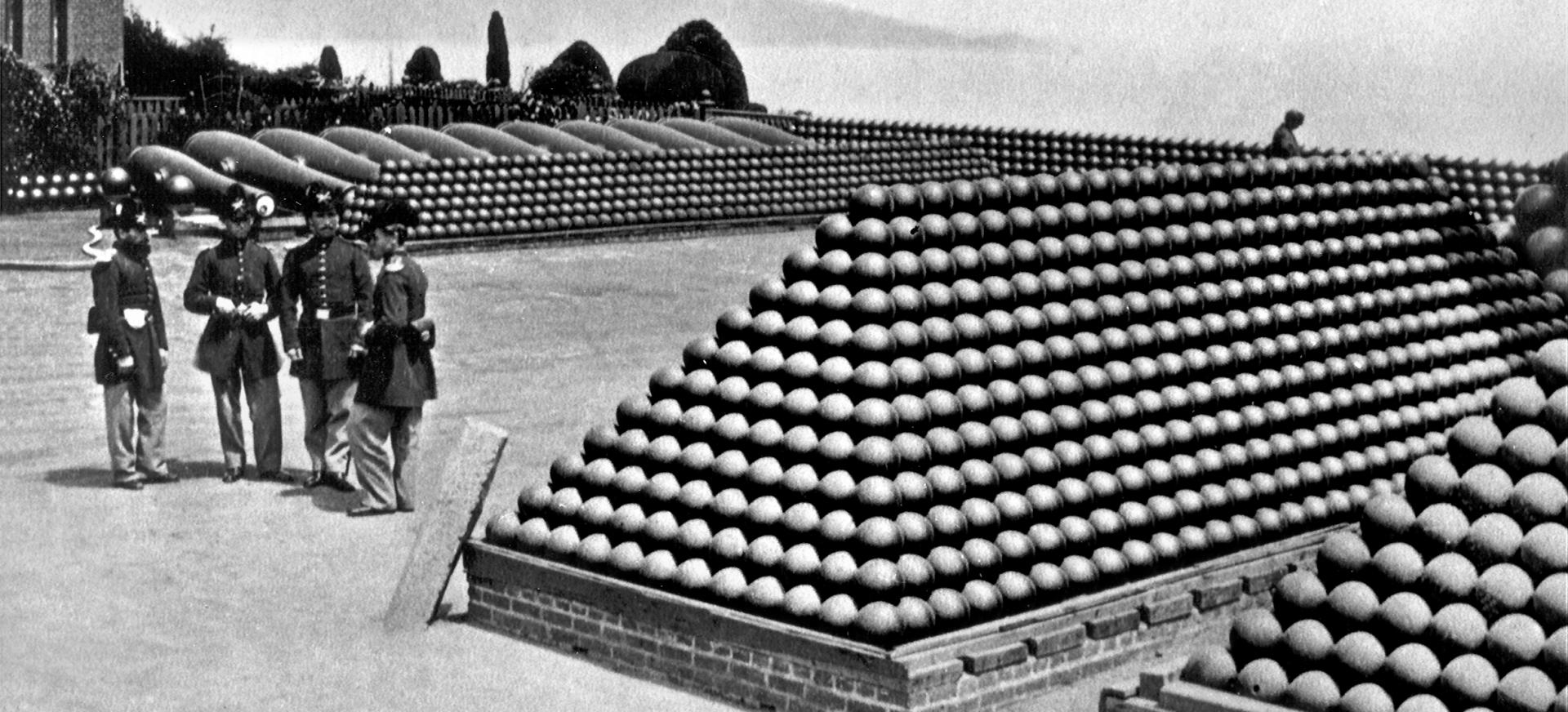
vs.



Now stack these 2-D layers to make 3-D structures

# Robert Hooke – 1660 - Cannonballs

*“Crystal must owe its regular shape to the packing of spherical particles”*



# Niels Steensen ~ 1670

observed that quartz crystals had the same angles between corresponding faces regardless of their size.

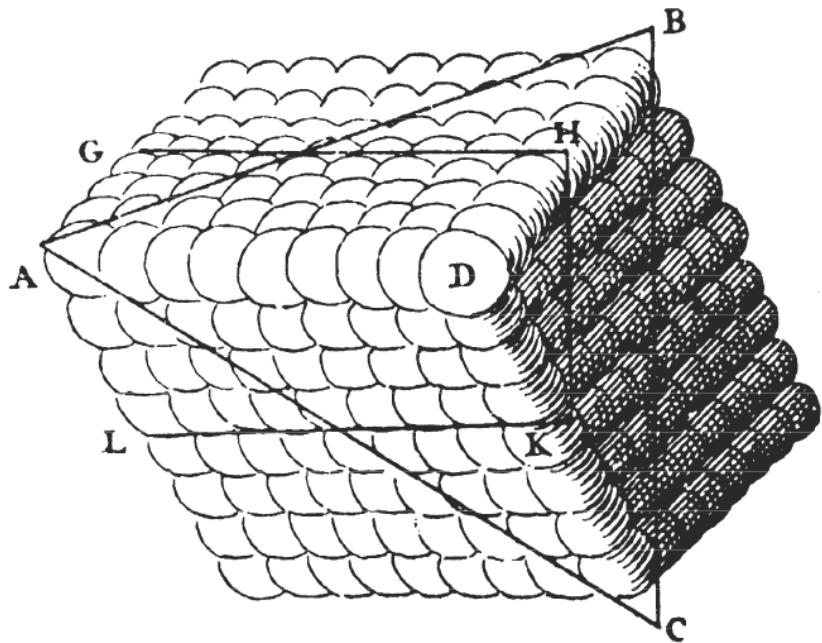


# SIMPLE QUESTION:

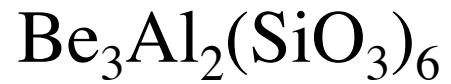
If I see something has a macroscopic shape very regular and cubic, can I infer from that if I divide, divide, divide, divide, divide.... if I get down to atomic dimensions,  
**will there be some cubic repeat unit?**

# Christian Huygens - 1690

Studying calcite crystals  
made drawings of atomic  
packing and bulk shape.



# BERYL



# Early Crystallography

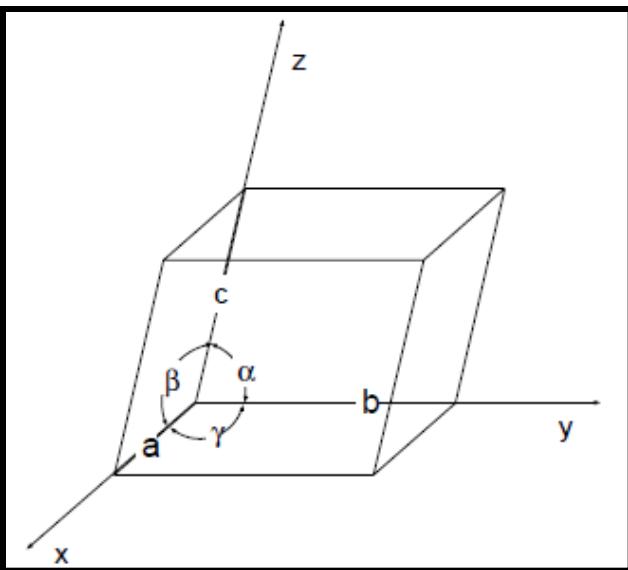


*René-Just Haüy* (1781): cleavage of calcite

- Common shape to all shards: rhombohedral
- How to model this mathematically?
- What is the maximum number of distinguishable shapes that will fill three space?
- Mathematically proved that there are only 7 distinct space-filling volume elements

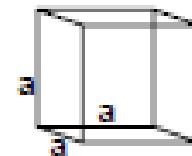
# The Seven Crystal Systems

## BASIC UNIT

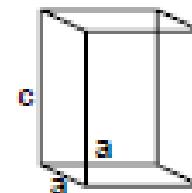


Specification of unit cell parameters

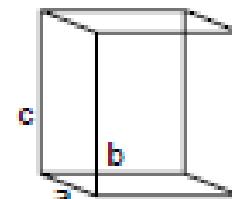
cubic  
 $a=b=c$   
 $\alpha=\beta=\gamma=90^\circ$



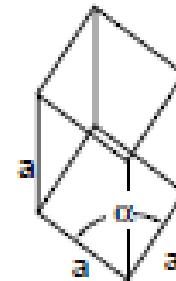
tetragonal  
 $a=b\neq c$   
 $\alpha=\beta=\gamma=90^\circ$



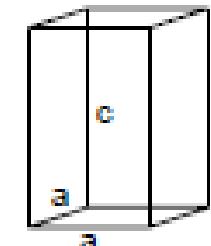
orthorhombic  
 $a\neq b\neq c$   
 $\alpha=\beta=\gamma=90^\circ$



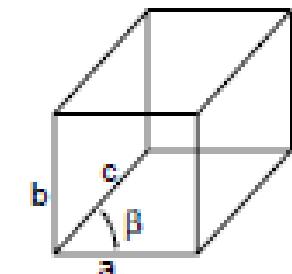
rhombohedral  
 $a=b=c$   
 $\alpha=\beta=\gamma\neq 90^\circ$



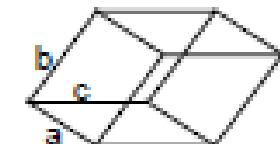
hexagonal  
 $a=b\neq c$   
 $\alpha=\beta=90^\circ$   
 $\gamma=120^\circ$



monoclinic  
 $a\neq b\neq c$   
 $\alpha=\gamma=90^\circ \neq \beta$



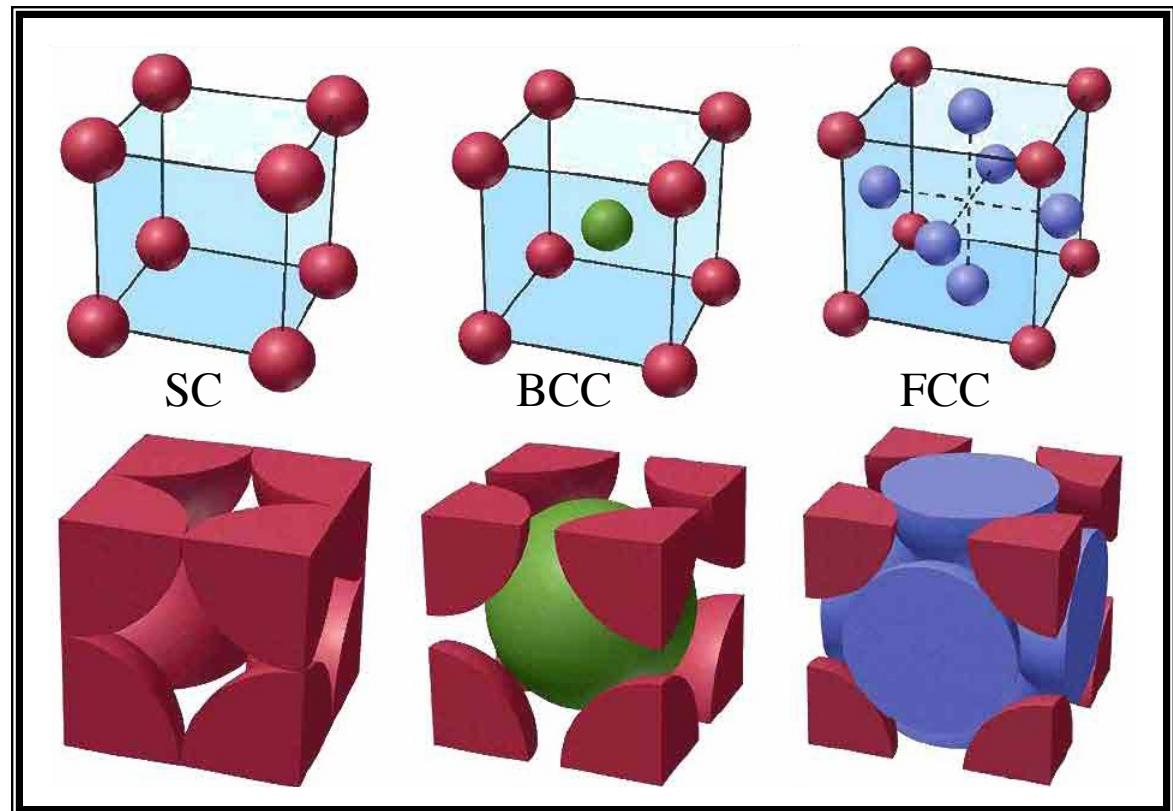
triclinic  
 $a\neq b\neq c$   
 $\alpha\neq\beta\neq\gamma\neq 90^\circ$



# August Bravais

- How many different ways can I put atoms into these seven crystal systems, and get distinguishable point environments?

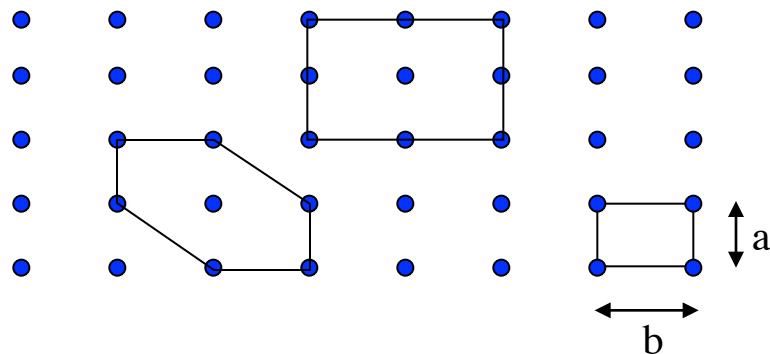
When I start putting atoms in the cube, I have three distinguishable arrangements.



And, he proved mathematically that there are 14 distinct ways to arrange points in space.

# Unit Cell Concept

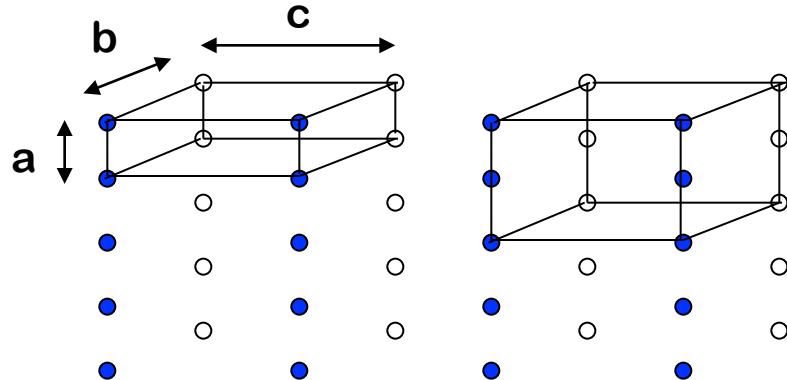
- The **unit cell** is the *smallest structural unit* or building block that uniquely can describe the crystal structure. Repetition of the unit cell generates the entire crystal. By simple translation, it defines a *lattice* .
- Lattice: The periodic arrangement of atoms in a Xtal.



**Lattice Parameter :**  
Repeat distance in the  
unit cell, one for in each  
dimension

# Crystal Systems

- Units cells and lattices in 3-D:
  - When translated in each lattice parameter direction, **MUST** fill 3-D space such that no gaps, empty spaces left.

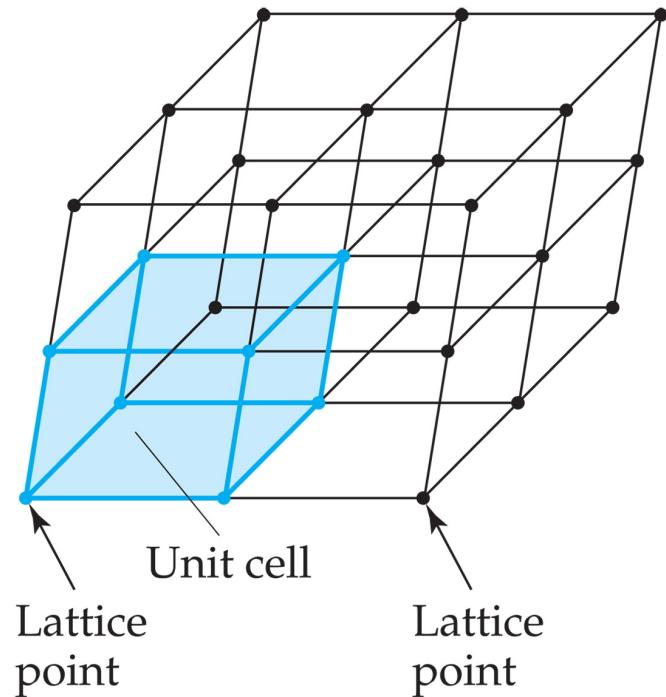


**Lattice Parameter : Repeat distance in the unit cell, one for in each dimension**

# Structure of Solids

Because of the order in a crystal, we can focus on the repeating pattern of arrangement called the **unit cell**.

A crystalline solid can be represented by a three dimensional array of points that is called **crystal lattice**.

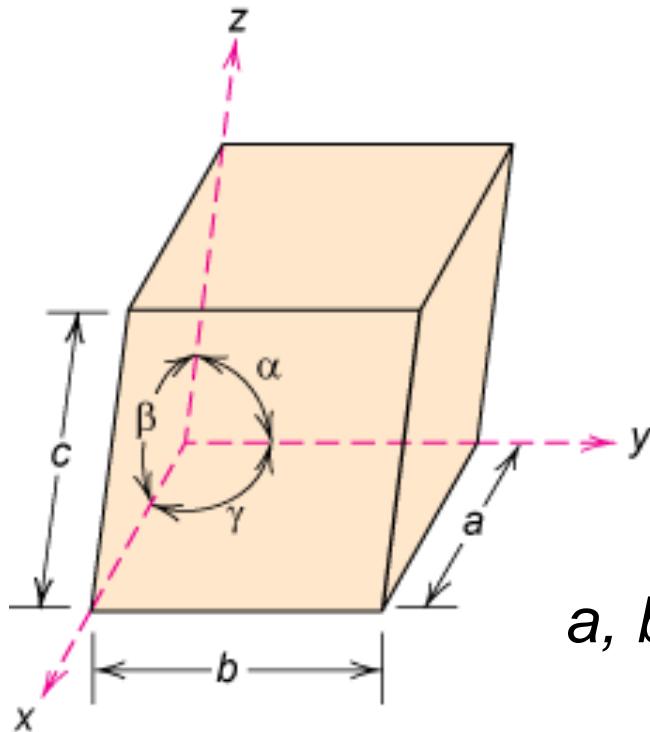


Simple crystal lattice and its  
associated unit cell.



# Crystal Systems

**Unit cell:** smallest repetitive volume which contains the complete lattice pattern of a crystal.



7 crystal systems

14 crystal lattices

$a$ ,  $b$ , and  $c$  are the lattice constants

Fig. 3.4, Callister 7e.

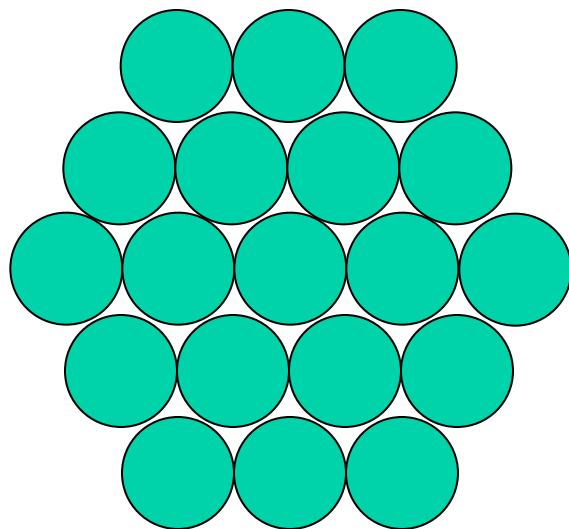
# The Importance of the Unit Cell

- One can analyze the Xtal as a whole by investigating a representative volume.
- Ex: from unit cell we can
  - **Find the distances between nearest atoms** for calculations of the forces holding the lattice together
  - Look at the **fraction of the unit cell volume filled by atoms** and **relate the density of solid to the atomic arrangement**
  - The properties of the periodic Xtal lattice determine the allowed **energies of electrons that participate in the conduction process**.

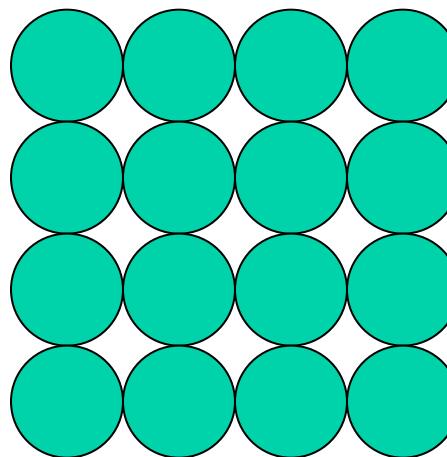
# Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions



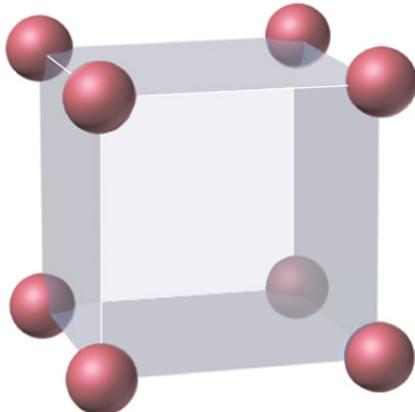
vs.



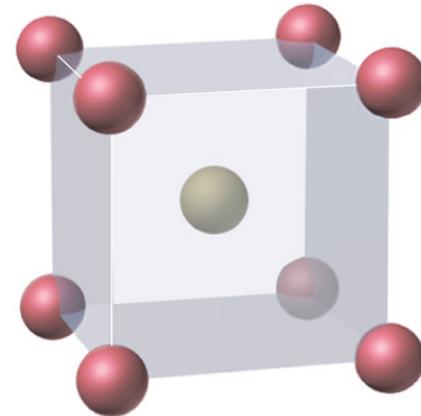
Now stack these 2-D layers to make 3-D structures

# Structure of Solids

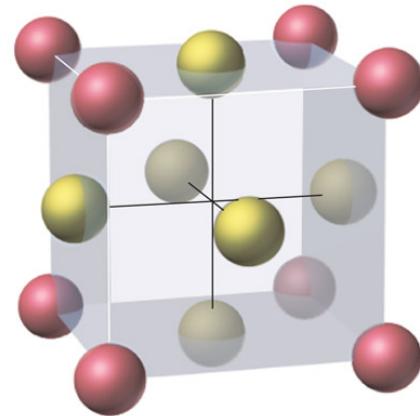
There are seven basic types of **unit cells**. The simplest of these is the cubic unit cell which has three kinds.



Primitive cubic



Body-centered cubic



Face-centered cubic

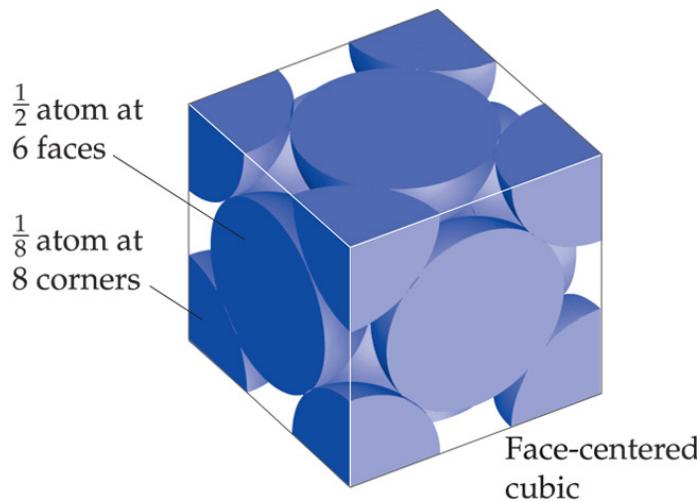
*Lattice points are at corners*

*Lattice points are at corners and at the center of the unit cell*

*Lattice points are at corners and at the center of each face*

# Structure of Solids

The atoms on the corners and faces are shared between unit cells.

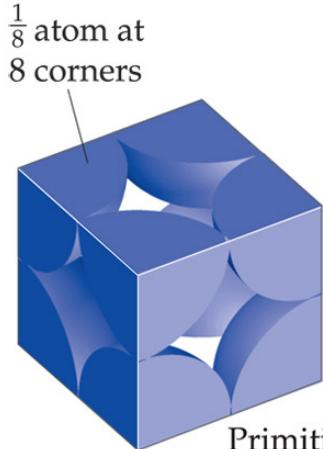


| Position in Unit Cell | Fraction in Unit Cell |
|-----------------------|-----------------------|
| Center                | 1                     |
| Face                  | $\frac{1}{2}$         |
| Edge                  | $\frac{1}{4}$         |
| Corner                | $\frac{1}{8}$         |

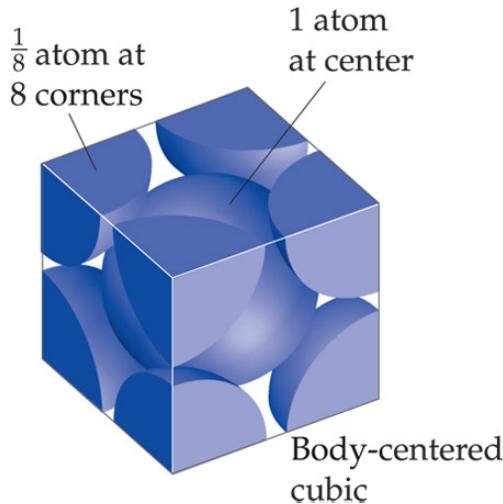
The empirical formula of an ionic solid can be also determined by determining how many ions of each element fall within the unit cell.

# Structure of Solids

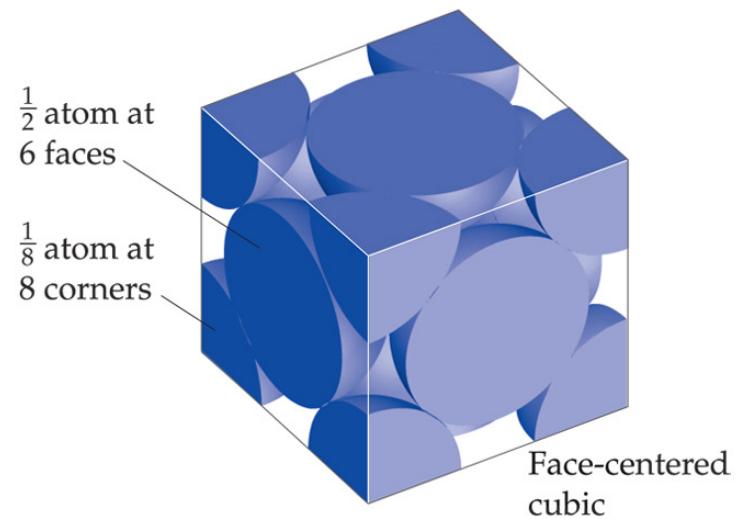
There are several types of basic arrangements in crystals. For example, Ni has a FCC, sodium has a BCC unit cell.



Primitive cubic



Body-centered cubic

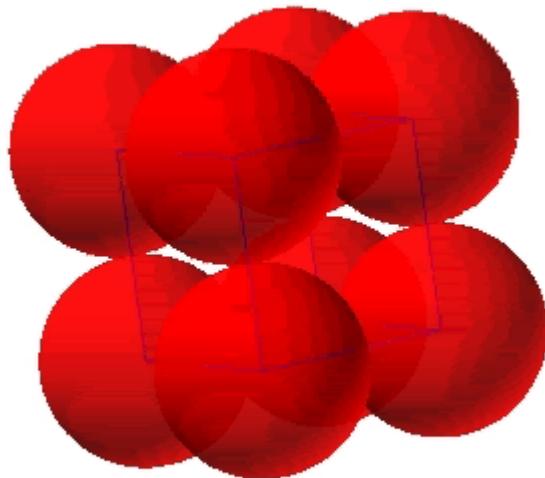


Face-centered cubic

# SIMPLE CUBIC STRUCTURE (SC)

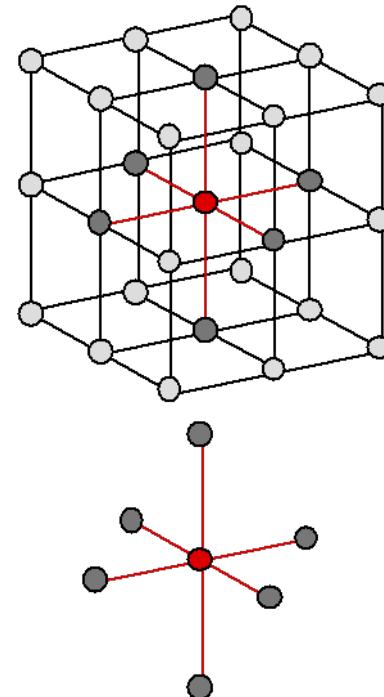
- Rare due to poor packing
- Close-packed directions are cube edges.

Closed packed direction is where the atoms touch each other



(Courtesy P.M. Anderson)

- Coordination # = 6  
(# nearest neighbors)

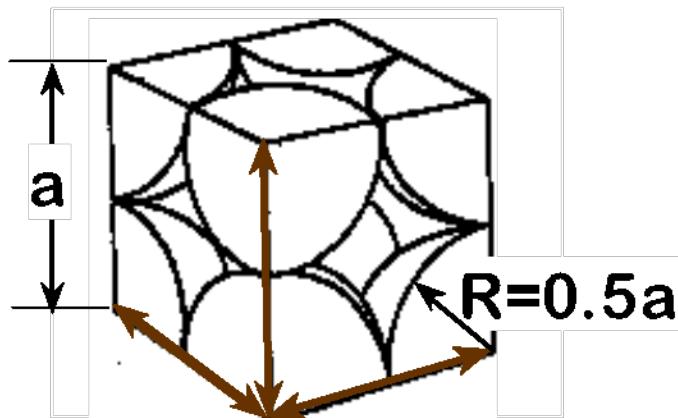


# ATOMIC PACKING FACTOR

$$\text{APF} = \frac{\text{Volume of atoms in unit cell}^*}{\text{Volume of unit cell}}$$

\*assume hard spheres

- APF for a simple cubic structure = 0.52



close-packed directions  
contains  $8 \times 1/8 =$   
**1 atom/unit cell**

Adapted from Fig. 3.19,  
*Callister 6e*.

$$\text{APF} = \frac{\frac{4}{3} \pi (0.5a)^3}{a^3}$$

atoms  
unit cell → 1

volume  
atom

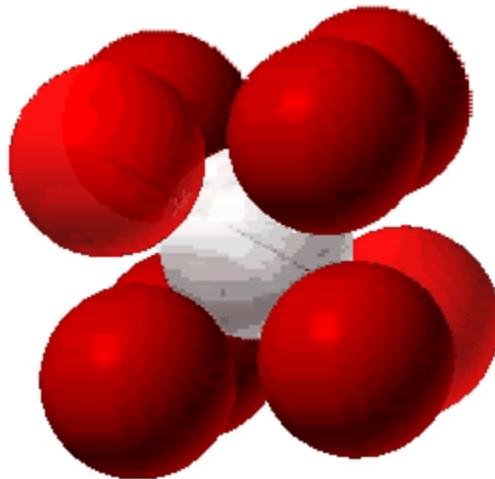
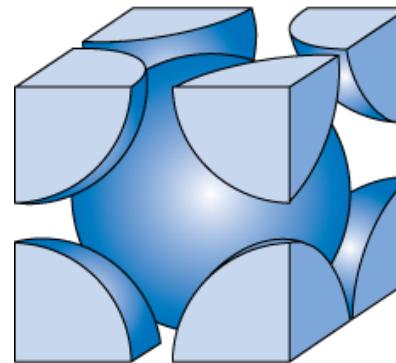
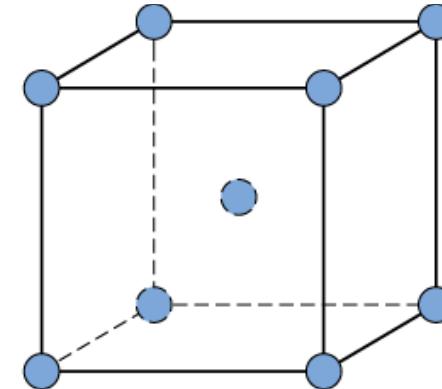
volume  
unit cell

# BODY CENTERED CUBIC STRUCTURE (BCC)

- Close packed directions are cube diagonals.  
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe ( $\alpha$ ), Tantalum, Molybdenum

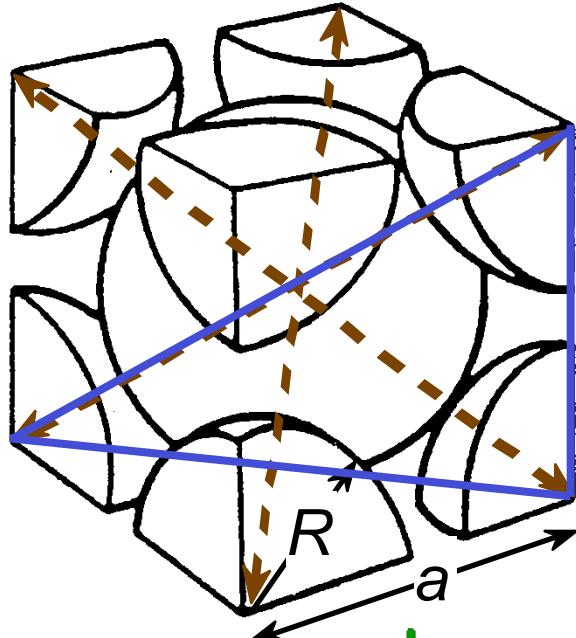
- Coordination # = 8



2 atoms/unit cell: 1 center + 8 corners  $\times 1/8$

# ATOMIC PACKING FACTOR: BCC

- APF for a body-centered cubic structure = 0.68



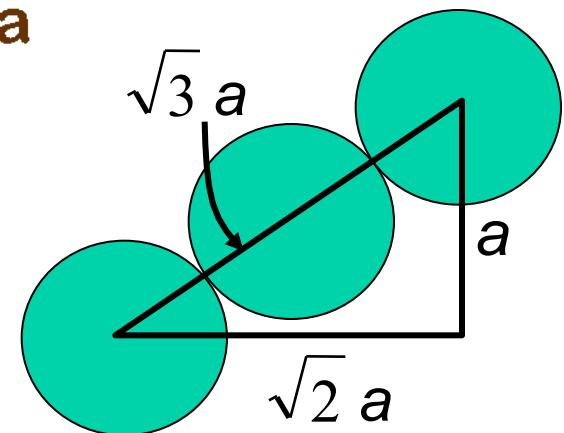
$$\text{APF} = \frac{\frac{atoms}{unit\ cell} \cdot \frac{4}{3} \pi (\sqrt{3}a/4)^3}{\frac{volume}{unit\ cell} \cdot a^3}$$

atoms  
unit cell

volume  
atom

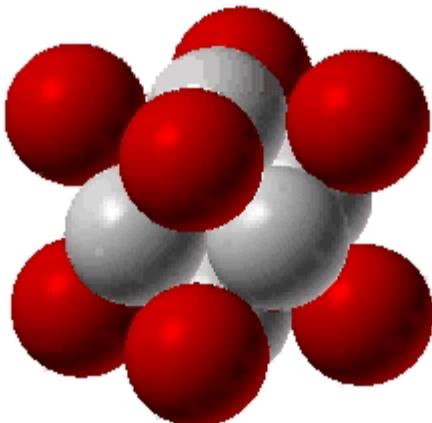
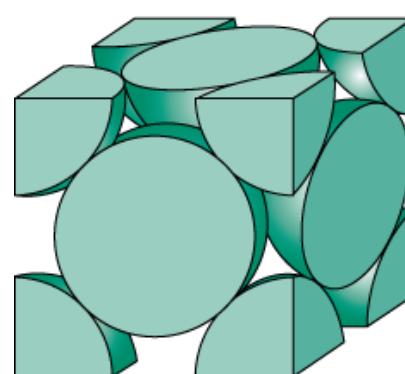
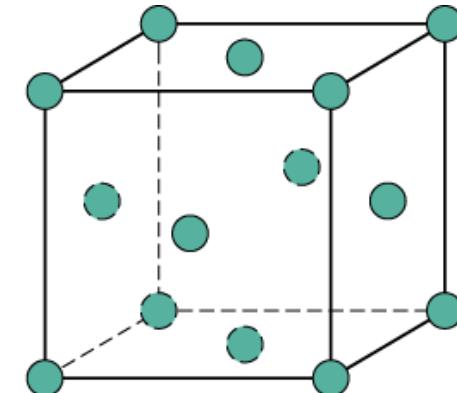
volume  
unit cell

Close-packed directions:  
length =  $4R$   
 $= \sqrt{3} a$



# FACE CENTERED CUBIC STRUCTURE (FCC)

- Close packed directions are face diagonals.
  - Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.
    - ex: Al, Cu, Au, Pb, Ni, Pt, Ag
    - Coordination # = 12



Adapted from Fig. 3.1, Callister 7e.

4 atoms/unit cell: 6 face  $\times$  1/2 + 8 corners  $\times$  1/8

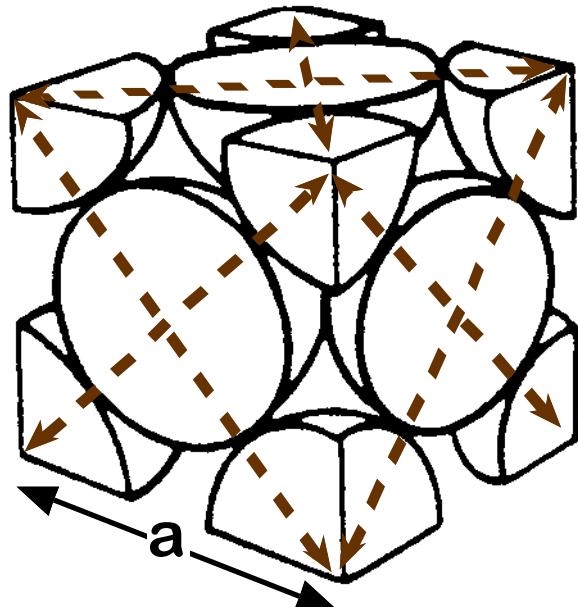
(Courtesy P.M. Anderson)

Chapter 3-9



# ATOMIC PACKING FACTOR: FCC

- APF for a body-centered cubic structure = 0.74



Close-packed directions:  
length =  $4R$   
 $= \sqrt{2} a$

Unit cell contains:  
 $6 \times 1/2 + 8 \times 1/8$   
 $= 4 \text{ atoms/unit cell}$

$$\text{APF} = \frac{\frac{\text{atoms}}{\text{unit cell}} \times \frac{4}{3} \pi (\sqrt{2}a/4)^3}{\frac{\text{volume}}{\text{unit cell}} \times a^3}$$

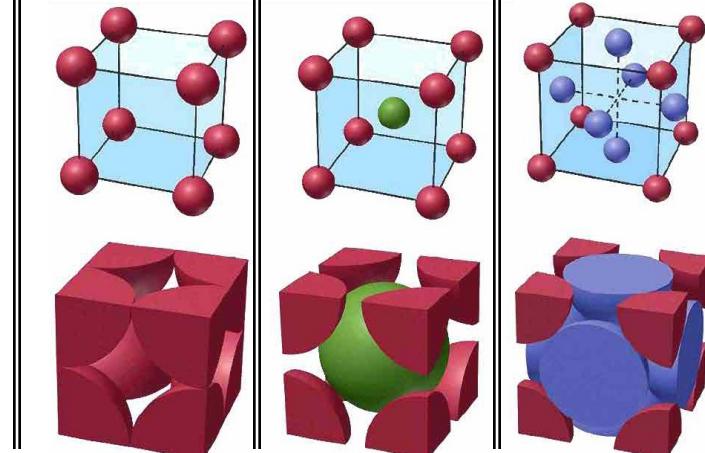
# Characteristics of Cubic Lattices

SC      BCC      FCC

|                             | SC    | BCC           | FCC           |
|-----------------------------|-------|---------------|---------------|
| Unit Cell Volume            | $a^3$ | $a^3$         | $a^3$         |
| Lattice Points per cell     | 1     | 2             | 4             |
| Nearest Neighbor Distance   | $a$   | $a\sqrt{3}/2$ | $a\sqrt{2}/2$ |
| Number of Nearest Neighbors | 6     | 8             | 12            |
| Atomic Packing Factor       | 0.52  | 0.68          | 0.74          |

$$APF = \frac{\text{Volume of atoms in unit cell}^*}{\text{Volume of unit cell}}$$

\*assume hard spheres



# Theoretical Density, $\rho$

$$\text{Density} = \rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

where

$n$  = number of atoms/unit cell

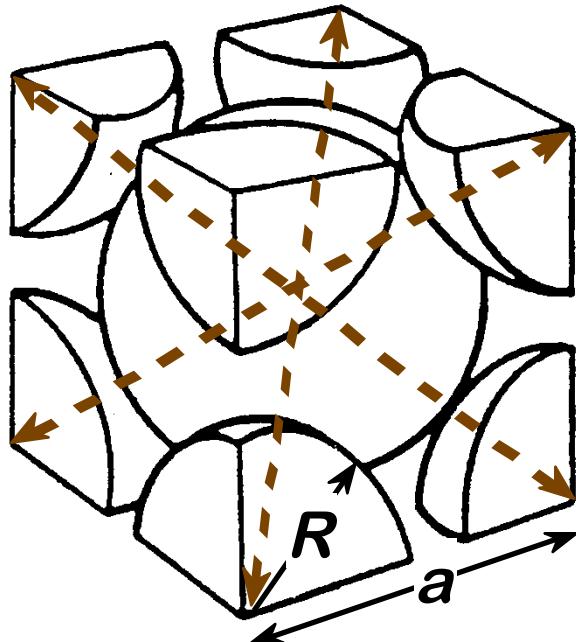
$A$  = atomic weight

$V_C$  = Volume of unit cell =  $a^3$  for cubic

$N_A$  = Avogadro's number

=  $6.023 \times 10^{23}$  atoms/mol

# Theoretical Density, $\rho$



- Ex: Cr (BCC)

$$A = 52.00 \text{ g/mol}$$

$$R = 0.125 \text{ nm}$$

$$n = 2$$

$$a = 4R/\sqrt{3} = 0.2887 \text{ nm}$$

$$\rho = \frac{\frac{\text{atoms}}{\text{unit cell}} \times A}{\frac{\text{volume}}{\text{unit cell}}} = \frac{2 \times 52.00}{a^3 \times 6.023 \times 10^{23}}$$

Inputs:

- $\frac{\text{atoms}}{\text{unit cell}}$  (2 atoms)
- $A$  (52.00 g/mol)
- $\frac{\text{volume}}{\text{unit cell}}$  ( $a^3$  and  $6.023 \times 10^{23}$ )
- $\frac{\text{atoms}}{\text{mol}}$  (2 atoms/mol)

Outputs:

|                             |                         |
|-----------------------------|-------------------------|
| $\rho_{\text{theoretical}}$ | $= 7.18 \text{ g/cm}^3$ |
| $\rho_{\text{actual}}$      | $= 7.19 \text{ g/cm}^3$ |

# Characteristics of Selected Elements at 20C

| Element   | Symbol | At. Weight<br>(amu) | Density<br>(g/cm <sup>3</sup> ) | Crystal<br>Structure | Atomic radius<br>(nm) |
|-----------|--------|---------------------|---------------------------------|----------------------|-----------------------|
| Aluminum  | Al     | 26.98               | 2.71                            | FCC                  | 0.143                 |
| Argon     | Ar     | 39.95               | -----                           | -----                | -----                 |
| Barium    | Ba     | 137.33              | 3.5                             | BCC                  | 0.217                 |
| Beryllium | Be     | 9.012               | 1.85                            | HCP                  | 0.114                 |
| Boron     | B      | 10.81               | 2.34                            | Rhomb                | -----                 |
| Bromine   | Br     | 79.90               | -----                           | -----                | -----                 |
| Cadmium   | Cd     | 112.41              | 8.65                            | HCP                  | 0.149                 |
| Calcium   | Ca     | 40.08               | 1.55                            | FCC                  | 0.197                 |
| Carbon    | C      | 12.011              | 2.25                            | Hex                  | 0.071                 |
| Cesium    | Cs     | 132.91              | 1.87                            | BCC                  | 0.265                 |
| Chlorine  | Cl     | 35.45               | -----                           | -----                | -----                 |
| Chromium  | Cr     | 52.00               | 7.19                            | BCC                  | 0.125                 |
| Cobalt    | Co     | 58.93               | 8.9                             | HCP                  | 0.125                 |
| Copper    | Cu     | 63.55               | 8.94                            | FCC                  | 0.128                 |
| Flourine  | F      | 19.00               | -----                           | -----                | -----                 |
| Gallium   | Ga     | 69.72               | 5.90                            | Ortho.               | 0.122                 |
| Germanium | Ge     | 72.59               | 5.32                            | Dia. cubic           | 0.122                 |
| Gold      | Au     | 196.97              | 19.32                           | FCC                  | 0.144                 |
| Helium    | He     | 4.003               | -----                           | -----                | -----                 |
| Hydrogen  | H      | 1.008               | -----                           | -----                | -----                 |

Adapted from  
Table, "Characteristics of  
Selected  
Elements",  
inside front  
cover,  
*Callister 6e.*

# DENSITIES OF MATERIAL CLASSES

$\rho_{\text{metals}}$     $\rho_{\text{ceramics}}$     $\rho_{\text{polymers}}$

Why?

Metals have...

- close-packing (metallic bonding)
- large atomic mass

Ceramics have...

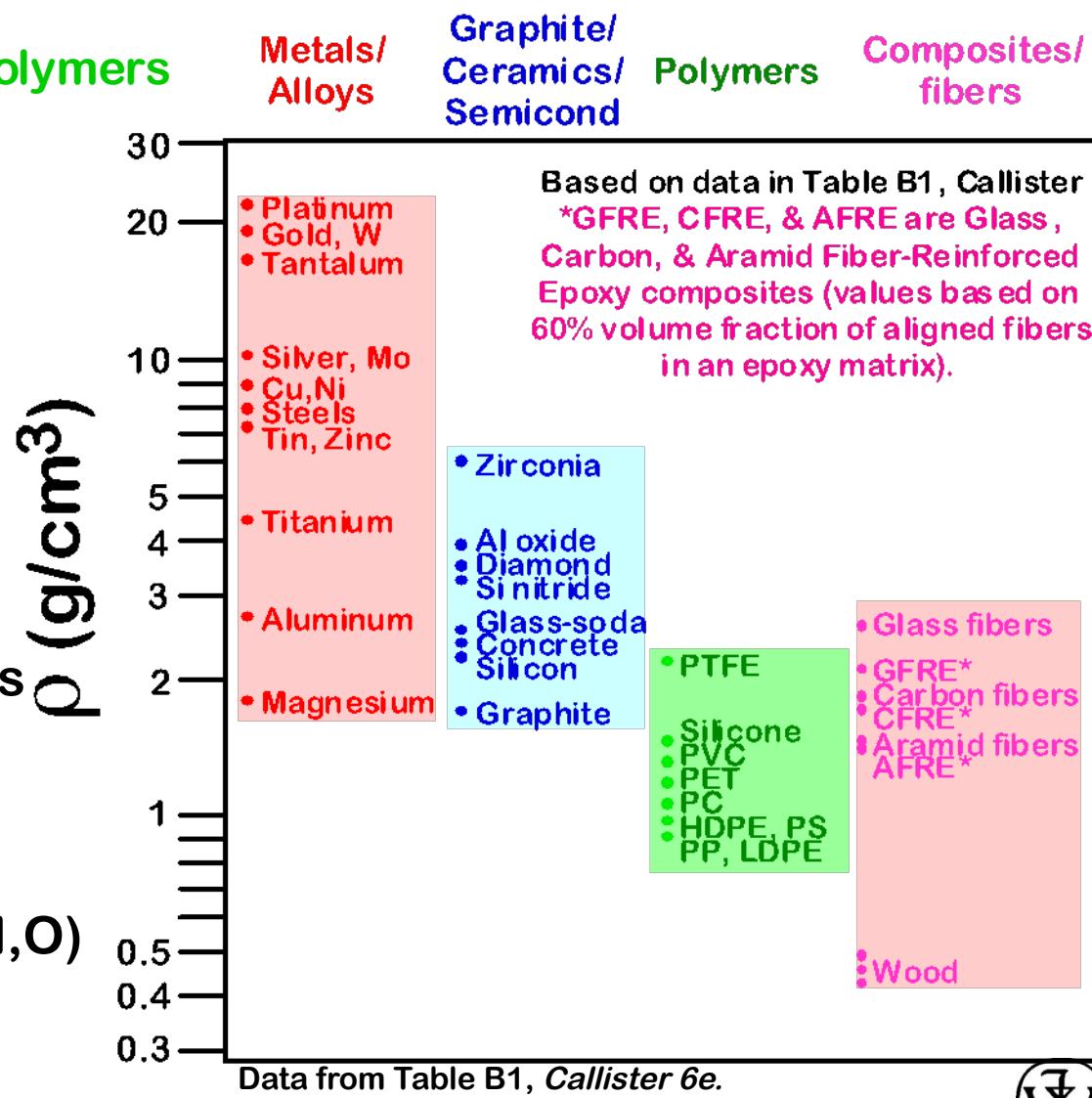
- less dense packing (covalent bonding)
- often lighter elements

Polymers have...

- poor packing (often amorphous)
- lighter elements (C,H,O)

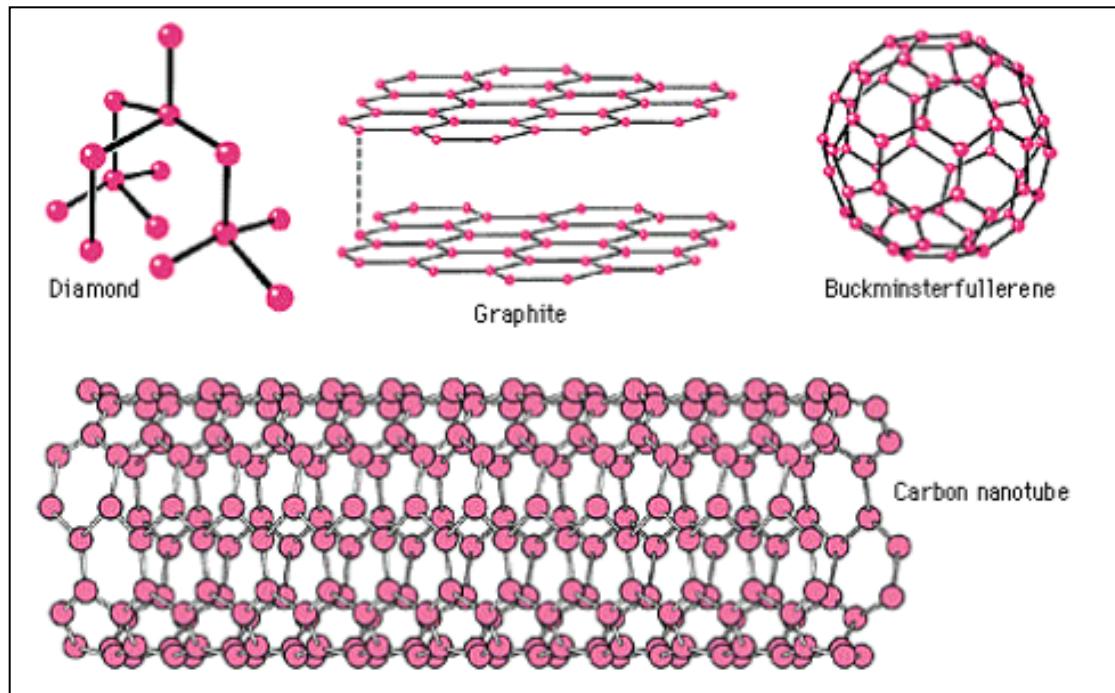
Composites have...

- intermediate values



# POLYMORPHISM & ALLOTROPY

- Some materials may exist in more than one crystal structure, this is called **polymorphism**.
- If the material is an elemental solid, it is called **allotropy**. An example of allotropy is carbon, which can exist as diamond, graphite, and amorphous carbon.

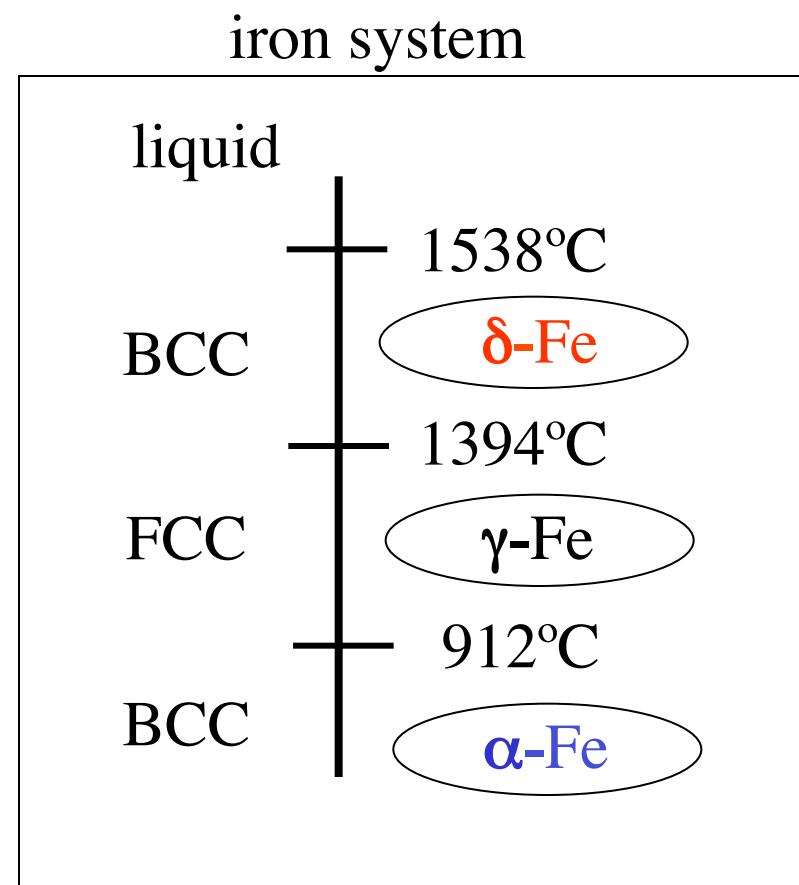


# Polymorphism

- Two or more distinct crystal structures for the same material (allotropy/polymorphism)

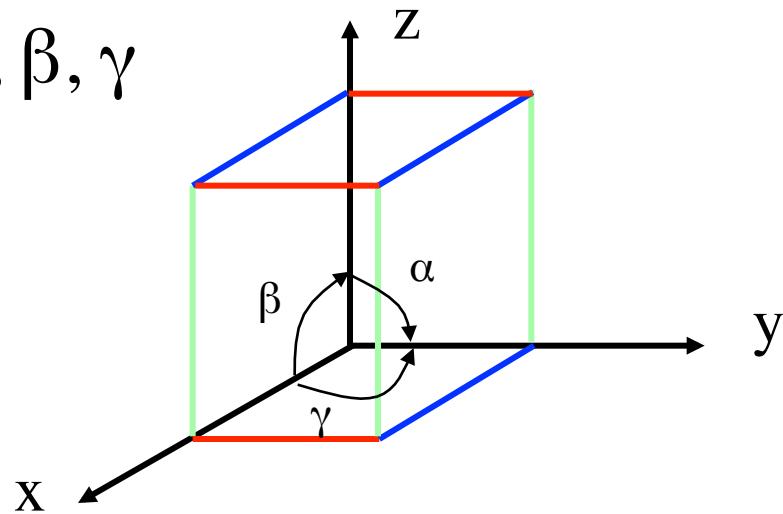
titanium  
 $\alpha, \beta$ -Ti

carbon  
diamond, graphite

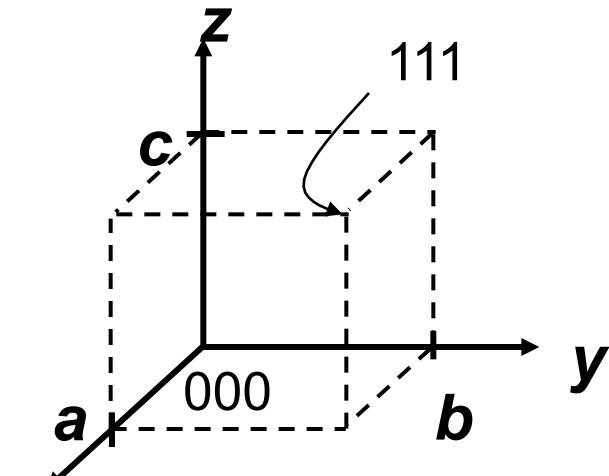


# Crystallographic Points, Directions, and Planes

- It is necessary to specify a particular point/location/atom/direction/plane in a unit cell
- We need some labeling convention. Simplest way is to use a 3-D system, where every location can be expressed using three numbers or *indices*.
  - **a**, **b**, **c** and  $\alpha$ ,  $\beta$ ,  $\gamma$

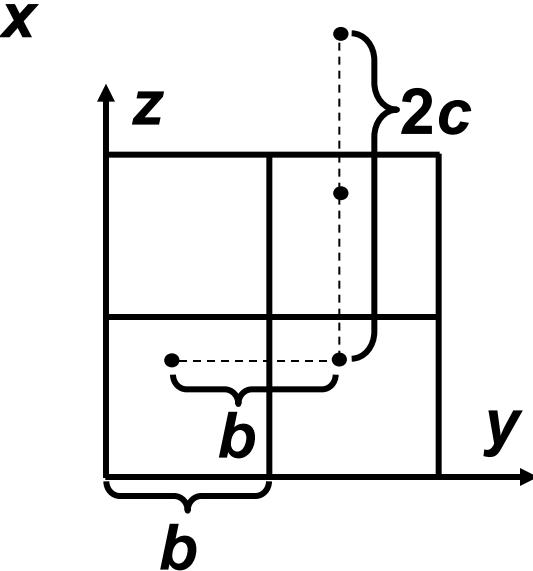


# Point Coordinates – Atom Positions



Point coordinates for unit cell center are

$$a/2, b/2, c/2 \quad \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

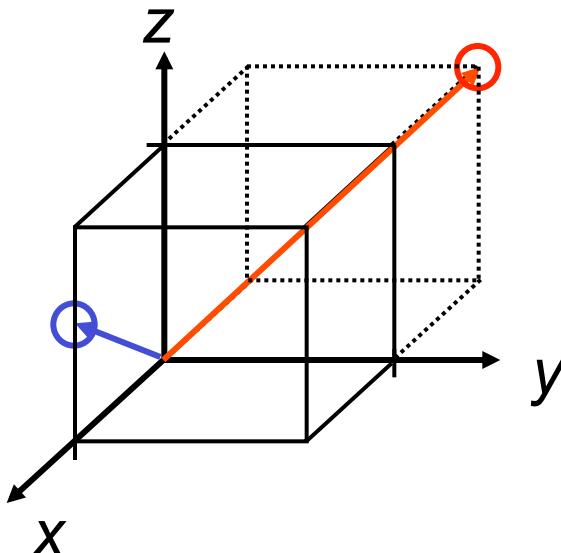


Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants  $\rightarrow$  identical position in another unit cell

# Crystallographic Directions

Crystallographic direction is a vector  $[uvw]$



ex:  $1, 0, \frac{1}{2} \Rightarrow 2, 0, 1 \Rightarrow [201]$

$-1, 1, 1 \Rightarrow [\bar{1}11]$  where overbar represents a negative index

## Algorithm

1. Vector repositioned (if necessary) to pass through origin. (Always passes thru origin 000)
2. Read off projections in terms of unit cell dimensions  $a$ ,  $b$ , and  $c$
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas

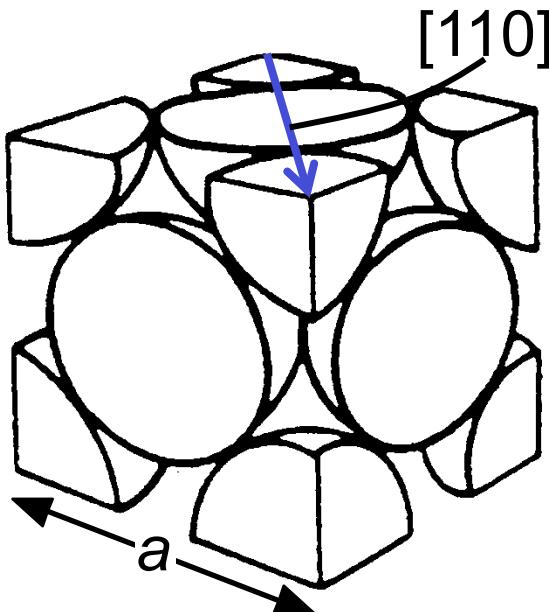
$[uvw]$

families of directions  $\langle uvw \rangle$

# Linear Density

- Linear Density of Atoms  $\equiv$  LD =

$$\frac{\text{Number of atoms}}{\text{Unit length of direction vector}}$$

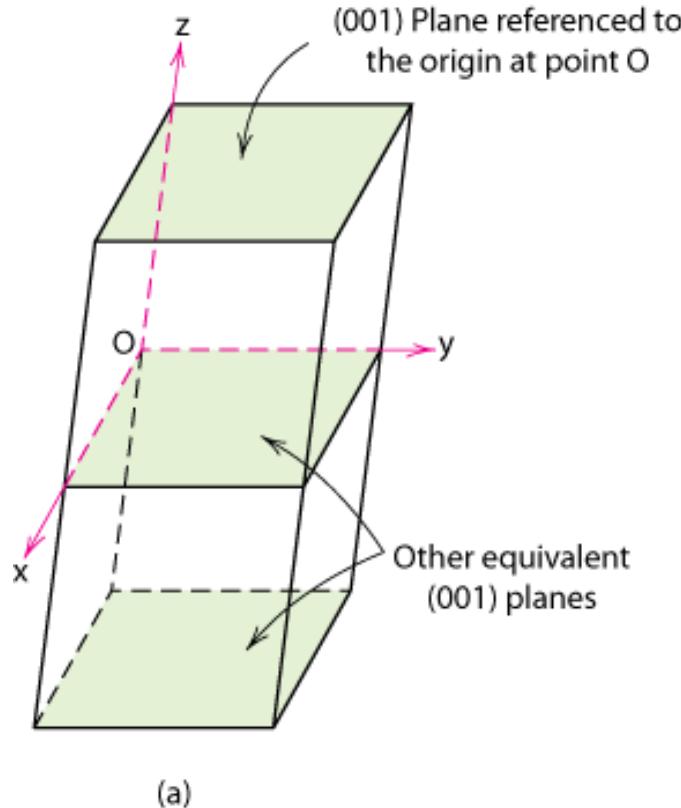
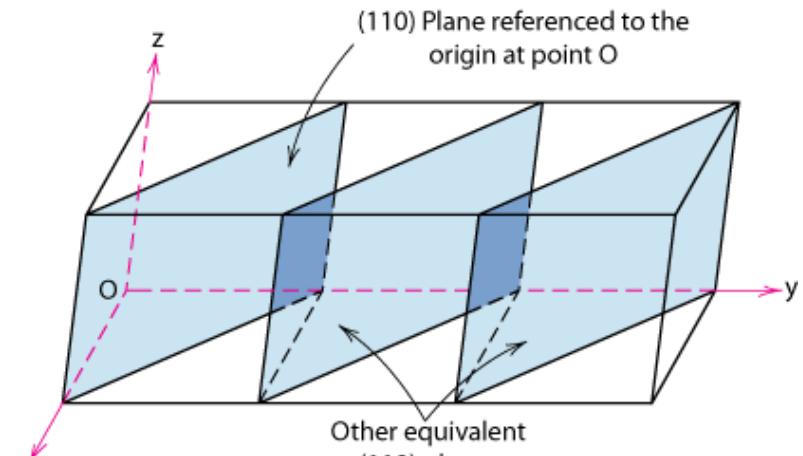
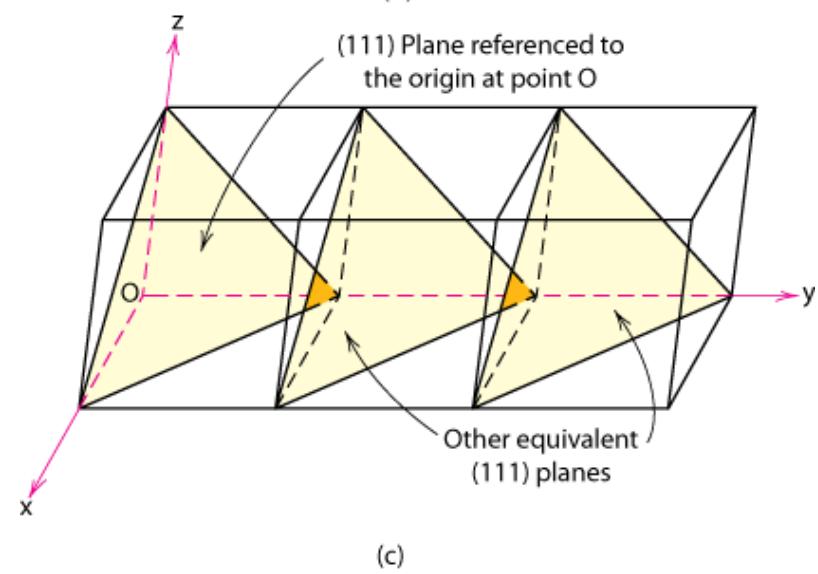


ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

$$\text{LD} = \frac{\text{# atoms}}{\text{length}} = \frac{2}{\sqrt{2a}} = 3.5 \text{ nm}^{-1}$$

# Crystallographic Planes



Adapted from Fig. 3.9, *Callister 7e*.

# Crystallographic Planes

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.
- Algorithm
  1. If plane passes thru origin, translate
  2. Read off intercepts of plane with axes in terms of  $a, b, c$
  3. Take reciprocals of intercepts
  4. Reduce to smallest integer values
  5. Enclose in parentheses, no commas i.e.,  $(hkl)$

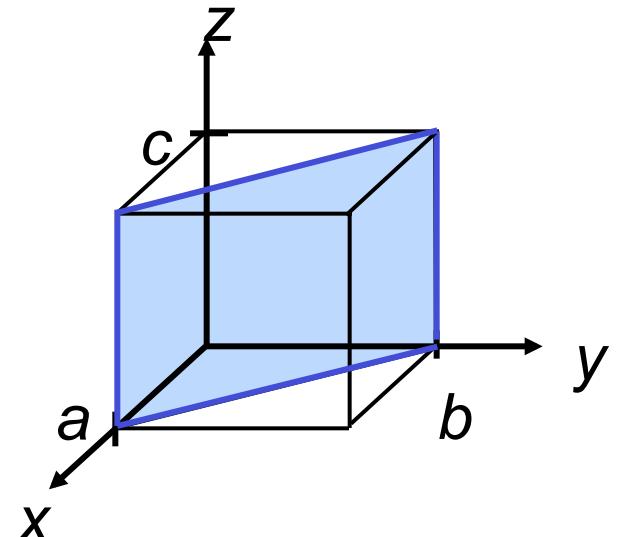
# Crystallographic Points, Directions, and Planes

- Crystallographic direction is a vector  $[uvw]$ 
  - Always passes thru origin  $000$
  - Measured in terms of unit cell dimensions  $a, b, and c$
  - Smallest integer values
- Planes with Miller Indices  $(hkl)$ 
  - If plane passes thru origin, translate
  - Length of each planar intercept in terms of the lattice parameters  $a, b, and c$ .
  - Reciprocals are taken
  - If needed multiply by a common factor for integer representation

# Crystallographic Planes

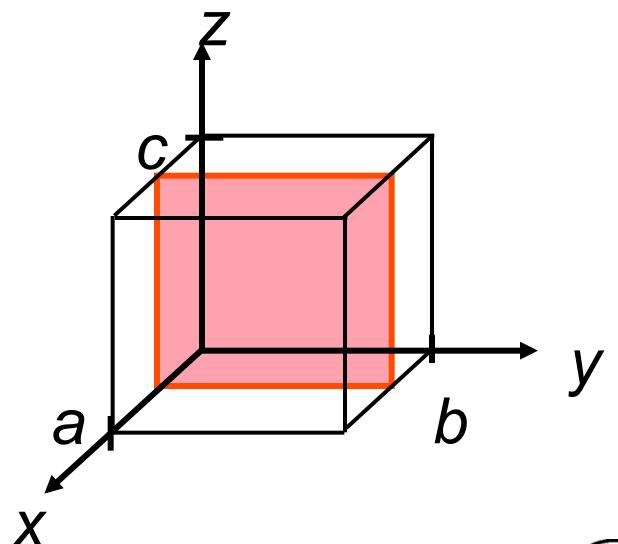
example

|                   | $a$   | $b$   | $c$        |
|-------------------|-------|-------|------------|
| 1. Intercept      | 1     | 1     | $\infty$   |
| 2. Reciprocals    | $1/1$ | $1/1$ | $1/\infty$ |
|                   | 1     | 1     | 0          |
| 3. Reduction      | 1     | 1     | 0          |
| 4. Miller Indices | (110) |       |            |



example

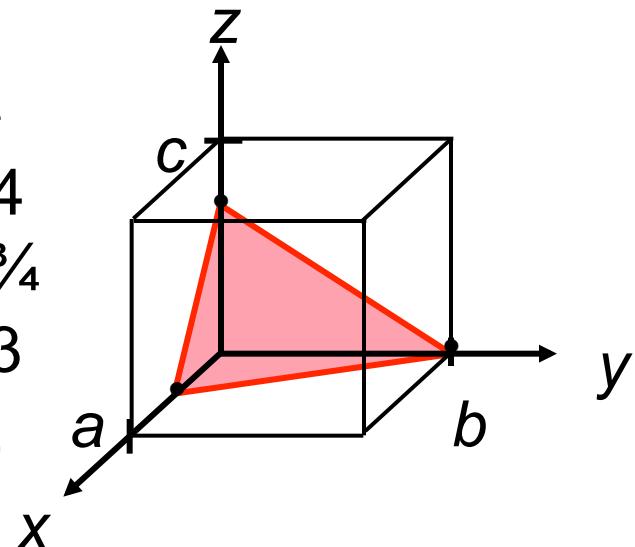
|                   | $a$             | $b$        | $c$        |
|-------------------|-----------------|------------|------------|
| 1. Intercept      | $1/2$           | $\infty$   | $\infty$   |
| 2. Reciprocals    | $1/\frac{1}{2}$ | $1/\infty$ | $1/\infty$ |
|                   | 2               | 0          | 0          |
| 3. Reduction      | 2               | 0          | 0          |
| 4. Miller Indices | (100)           |            |            |



# Crystallographic Planes

example

|                   | $a$   | $b$ | $c$ |
|-------------------|-------|-----|-----|
| 1. Intercepts     | 1/2   | 1   | 3/4 |
| 2. Reciprocals    | 1/½   | 1/1 | 1/¾ |
|                   | 2     | 1   | 4/3 |
| 3. Reduction      | 6     | 3   | 4   |
| 4. Miller Indices | (634) |     |     |



Family of Planes  $\{hk\}$

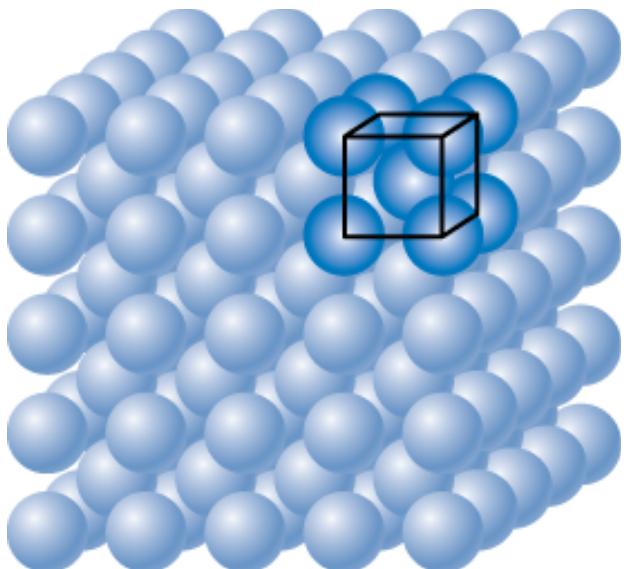
Ex:  $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

# Crystallographic Planes

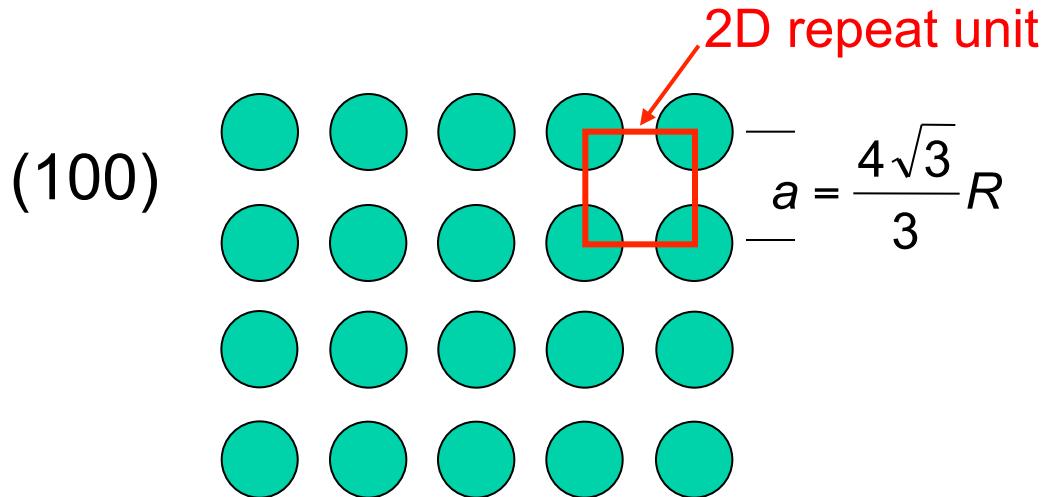
- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
  - a) Draw (100) and (111) crystallographic planes for Fe.
  - b) Calculate the planar density for each of these planes.

# Planar Density of (100) Iron

Solution: At  $T < 912^{\circ}\text{C}$  iron has the BCC structure.



Adapted from Fig. 3.2(c), Callister 7e.

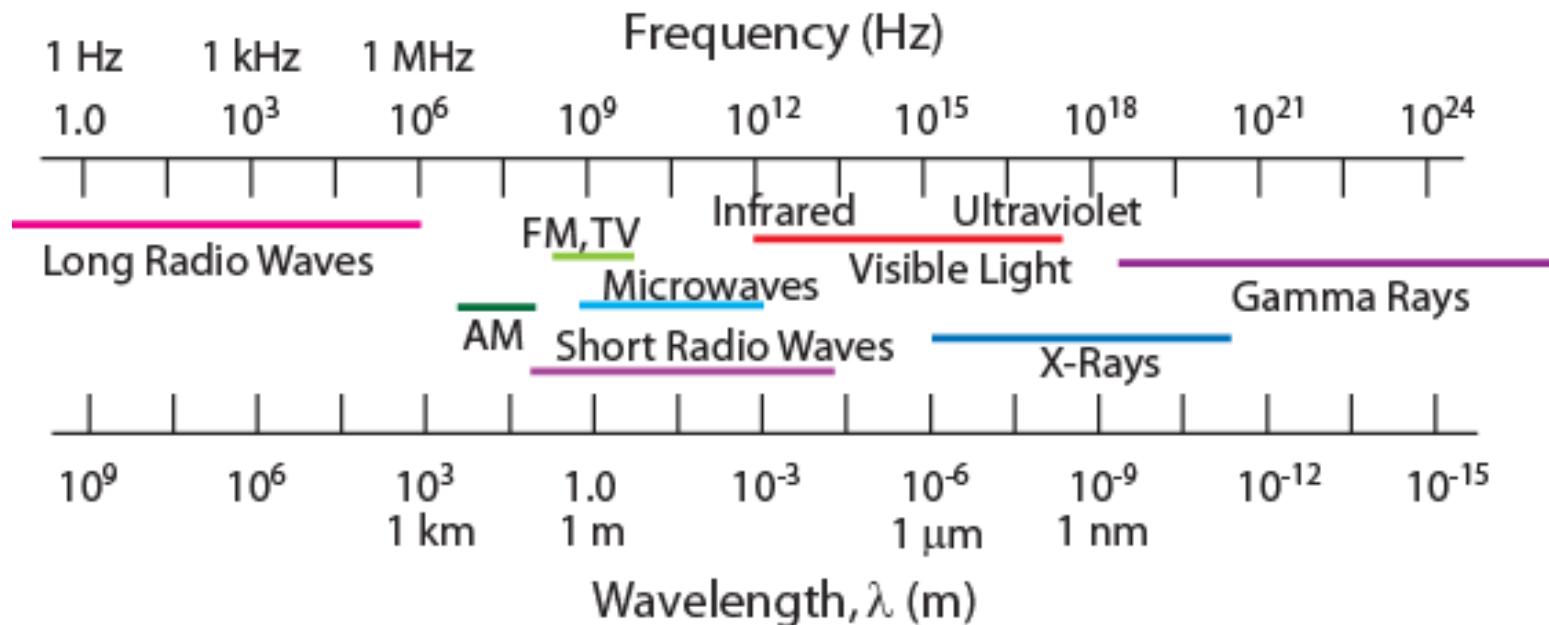


Radius of iron  $R = 0.1241 \text{ nm}$

$$\text{Planar Density} = \frac{\frac{\text{atoms}}{\text{2D repeat unit}}}{\frac{\text{area}}{\text{2D repeat unit}}} = \frac{1}{\left(\frac{4\sqrt{3}}{3} R\right)^2} = 12.1 \frac{\text{atoms}}{\text{nm}^2} = 1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}$$

# Section 3.16 - X-Ray Diffraction

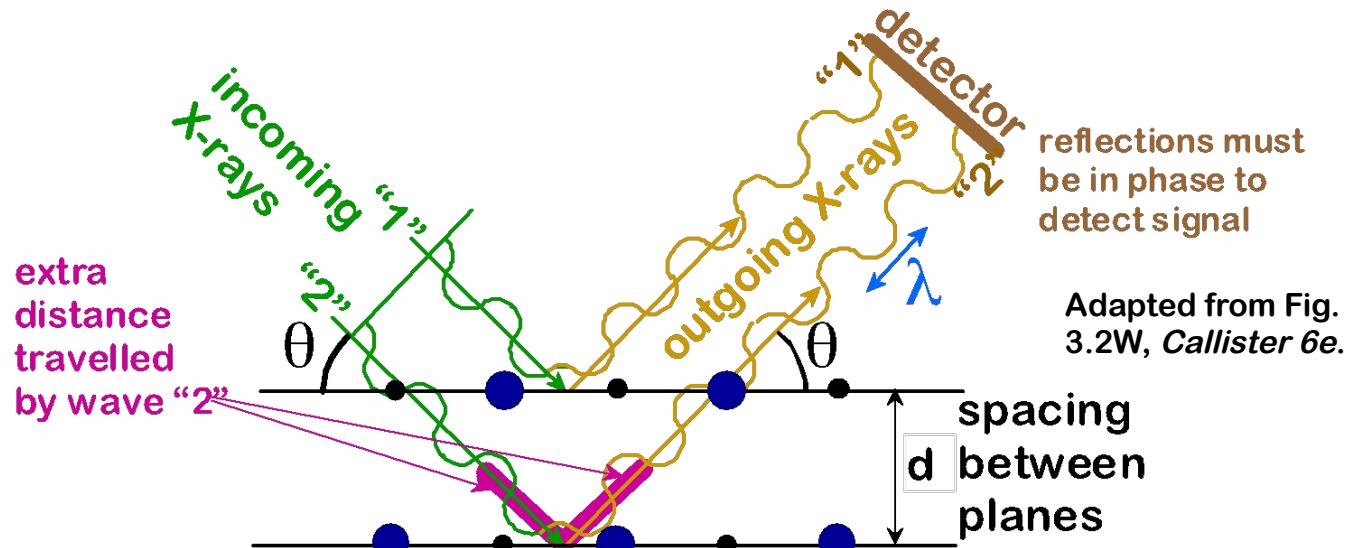
## Electromagnetic Spectrum



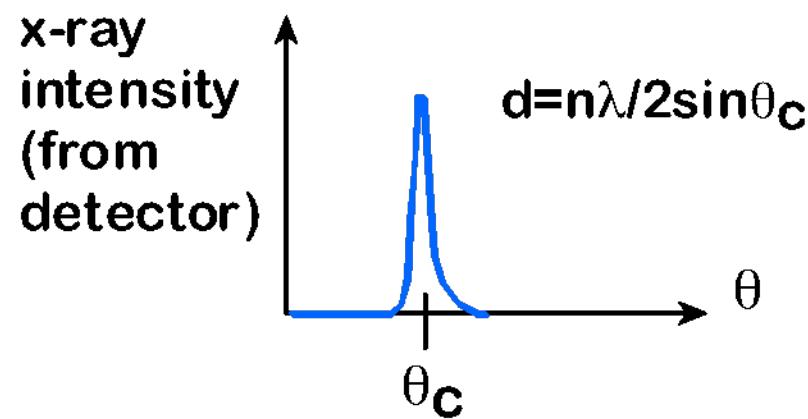
- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings  $< \lambda$
- Spacing is the distance between parallel planes of atoms.

# X-RAYS TO CONFIRM CRYSTAL STRUCTURE

- Incoming X-rays diffract from crystal planes.



- Measurement of: Critical angles,  $\theta_c$ , for X-rays provide atomic spacing,  $d$ .



# SUMMARY

- Atoms may assemble into **crystalline** or **amorphous** structures.
- We can predict the **density** of a material, provided we know the **atomic weight**, **atomic radius**, and **crystal geometry** (e.g., FCC, BCC, HCP).