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Why do we care about crystal
structures, directions, planes ?

Physical properties of materials depend on the geometry of crystals

ISSUES TO ADDRESS...

* How do atoms assemble into solid structures?
(for now, focus on metals)

* How does the density of a material depend on
its structure?

e When do material properties vary with the
sample (i.e., part) orientation?

Chapter 3-1



Structure of Solids

SOLID: Smth. which is dimensionally stable, i.e., has a volume of

Crystalline

Particles are in highly
ordered arrangement.

|
Y o W L W L, W

° ® ° °
\ ) \ )
SR SV an BN op U op
+ " ] o
) \ Y
“® e e _ e e
° ° ° °
) ‘ Y N )
2 9 an' Wi o’ \h N
\
Crystalline SiO, O
Y Gr—\ w
o e °, —9
Two-dimensiona 1 Actual three-dim
unit

1ts own

Amorphous (non crystalline)

No particular order in the
arrangement of particles.

Amorphous SiO, @
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Atomic Arrangement

SOLID: Smth. which is dimensionally stable, 1.e., has a volume
of its own

classifications of solids by atomic arrangement

<~ O\

ordered disordered
atomic arrangement regular random*
order long-range short-range
name crystalline amorphous

“crystal” “glass”

fanors. ()
Chapter 3- .



Energy and Packing

* Non dense, random packing

typical neighbor

bond energy —pt

* Dense, ordered packing

5585

typical neighbor

bond energy _pl

AEnergy

typical neighbor
¢bond length

AEnergy

typical neighbor
‘ bond length

Dense, ordered packed structures tend to have lower energies.

COOLING

Chapter 3-




MATERIALS AND PACKING

Crystalline materials... ~
o atoms pack in periodic, 3D arrays

) N
e typical of: -metals
-many ceramics
-some polymer crystalline SiO2
Adagted from Fig. 3.18(a),
LONG RANGE ORDER Callster 6e.
*Si e Oxygen

Noncrystalline materials...

e atoms have no periodic packing
* occurs for: -complex structures
-rapid cooling

"Amorphous" = Noncrystallin noncrystalline SiO2
Adapted from Fig. 3.18(b),
Callister 6e.

SHORT RANGE ORDER Chapter 3-3




Metallic Crystal Structures

* How can we stack metal atoms to minimize empty
space?

2-dimensions

sy . 900
soeoE
900

++4

Now stack these 2-D layers to make 3-D structures

7
Chapter 3- 7



.Robert Hooke — 1660 - Cannonballs

" Crystal must owe its reqular shape to the
packing of spherical particles’

" h e




Niels Steensen~ 1670

observed that quartz crystals had the
same angles between corresponding
faces regardless of their size.

toors.
Chapter 3-



SIMPLE QUESTION:

If | see something has a macroscopic shape
very regular and cubic, can | infer from that
if | divide, divide, divide, divide, divide....

iIf | get down to atomic dimensions,

will there be some cubic repeat unit?

s @
Chapter 3-



Christian Huygens - 1690

Studying calcite crystals
made drawings of atomic
packing and bulk shape.

11
Chapter 3-




BERYL

Be,Al(SiO,),

e @
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Early Crystallography

René-Just Haiiy (1781): cleavage of calcite

||||||||||||"'|| . 4:;31 'v’

Common shape to all shards: rhombohedral

How to model this mathematically?

What 1s the maximum number of

distinguishable shapes that will fill three

space”?

Mathematically proved that there are only 7

distinct space-filling volume elements

s @
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The Seven Crystal Systems

BASIC UNIT

Specification of unit cell
parameters

cubic |
a=b=c a
o=fl=y=000 2

tetragonal
a=h=c c
r=f=y=90% 3

arthorhombic
[
o=g=y=900 b

rhiomibxohedral
a=b=c
® A/

hexagonal
a=b=c o
oi=F=900
F"|E'|]D L ="

]

monoclnic
a=lec

o=y=900=f )
Ao

d

triclinic
Gl
i Hee w9 00

o

rs. (H)
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August Bravais

 How many different ways can I put atoms into these seven crystal
systems, and get distinguishable point environments?

When I start
putting atoms in the
cube, I have three
distinguishable
arrangements.

And, he proved mathematically that there are 14 distinct ways to
arrange points in space. Chapter3- "IV



Unit Cell Concept

 The unit cell is the smallest structural unit or building
block that uniquely can describe the crystal
structure. Repetition of the unit cell generates the
entire crystal. By simple translation, it defines a
lattice .

e Lattice: The periodic arrangement of atoms in a Xtal.

: : : [E] : : Lattice Parameter :

o e o Repeat distance in the

o Q o o I:I Ia unit cell, one for in each
o o ° o dimension
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Crystal Systems

e Units cells and lattices in 3-D:

— When translated in each lattice parameter direction, MUST fill
3-D space such that no gaps, empty spaces left.

C
b < >
— 5 > 2 Lattice Parameter : Repeat
a I S o) ) distance in the unit cell, one
o o & ¢ for in each dimension
¢ (@) ° (@) (@) (@)
() () () ()
(@) (@) (@) (@)
() () () ()
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Structure of Solids

Because of the order in a crystal, we can focus on the
repeating pattern of arrangement called the unit cell.

A crystalline solid can be //
represented by a three 77 / /V ] /
dimensional array of points [ A | ]
that is called crystal lattice. ///[y Iy/{
Uni:c cell
Lattice Lattice
point point

Simple crystal latjce and @
associated urifrtER.



Crystal Systems

Unit cell: smallest repetitive volume which
contains the complete lattice pattern of a crystal.

[ crystal systems

14 crystal lattices

Fig. 3.4, Callister 7e. @
Chapter 3-



The Importance of the Unit Cell

* One can analyze the Xtal as a whole by investigating a
representative volume.

e Ex: from unit cell we can

— Find the distances between nearest atoms for calculations
of the forces holding the lattice together

— Look at the fraction of the unit cell volume filled by atoms
and relate the density of solid to the atomic arrangement

— The properties of the periodic Xtal lattice determine the
allowed energies of electrons that participate in the
conduction process.

.
Chapter 3-



Metallic Crystal Structures

 How can we stack metal atoms to minimize empty
space”’

2-dimensions

sy . 900
soeoE
900

++4

Now stack these 2-D layers to make 3-D structures

Chapter 3-



Structure of Solids

There are seven basic types of unit cells. The simplest of
these is the cubic unit cell which has three kinds.

Primitive cubic

Lattice points are at
corners

Body-centered cubic

Lattice points are at
corners and at the
center of the unit cell

QQ‘JQQ

V)"QVJ"
00 Yo

Face-centered cubic

Lattice points are at
corners and at the

center of each fac
gech fneq)
Chapter 3-




Structure of Solids

The atoms on the corners and faces are shared between

unit cells.
Position in Fraction in
7 atom at Unit Cell Unit Cell
6 faces

. | ’\ ‘ Center 1
g corners / y Face l
/ » .
) (/ Edge i
" Face-centered 1
s ok Corner 3

The empirical formula of an ionic solid can be also determined
by determining how many ions of each element fall wjthin tt‘@
unit cell. Chapter 3-



Structure of Solids

There are several types of basic arrangements in crystals.
For example, Ni has a FCC, sodium has a BCC unit cell.

i 1 1 atom
g atom at g atom at at center

8 corners 8 corners

% atom at
6 faces

1
g atom at
8 corners

Face-centered

Body-centered ;
cubic

Primitive cubic ;
cubic

dhoiors.
Chapter 3-



SIMPLE CUBIC STRUCTURE (SC)

 Rare due to poor packing
e Close-packed directions are cube edges.

Closed packed direction 1s where  Coordination # = 6
the atoms touch each other (# nearest neighbors)

©
(uourtesy F.NM. Anaerson) @
Chapter 3-5



ATOMIC PACKING FACTOR

APF =

Volume of atoms in unit cell*

*assume hard spheres

Volume of unit cell

 APF for a simple cubic structure =0.52

1

LA

close-packed directions

volume
atom

atoms 4 &
unit cell 4 — x (0.5a)3
R=0.5a APF =

3
a2 . _volume
unit cell

contains 8x 1/8 =

Callister 6e.

1 atom/unit cell
Adapted from Fig. 3.19,

Chapter 3-6



BODY CENTERED CUBIC
STRUCTURE (BCC)

* Close packed directions are cube diagonalils.

--Note: All atoms are identical; the center atom is shaded
differently only for ease of viewing.

ex: Cr, W, Fe (a), Tantalum, Molybdenum
e Coordination#=38

2 atoms/unit cell: 1 center + 8 corners x 1/8

(Courtesy P.M. Anderson) Chapter 3-7



ATOMIC PACKING FACTOR: BCC

 APF for a body-centered cubic structure = 0.68

Close-packed directions:
length = 4R
=/3 a

V3 a

V2 a
4 volume
unit cell ™ 2 —n (3a/4)3 +— atom
APF =
3 volume
av <

unit cell
Chapter 3-8



FACE CENTERED CUBIC
STRUCTURE (FCC)

* Close packed directions are face diagonals.

--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag
e Coordination #=12

i

Adapted from Fig. 3.1, Callister 7e.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

(Courtesy P.M. Anderson) @
Chapter 3-9



ATOMIC PACKING FACTOR: FCC

 APF for a body-centered cubic structure =0.74

Close-packed directions:
length = 4R
=[2 a

Unit cell contains:
6x1/2+8x1/8
= 4 atoms/unit cell

atoms -, 4 3 < volume
unit cell ™4 —x(2a/4)° ¥
APF =
3 volume
a° <

unit cell
Chapter 3-10



Characteristics of Cubic Lattices
SC BCC FCC

Unit Cell Volume a3 a3
Lattice Points per cell 2 4
Nearest Neighbor Distance aV3/2 |aV2/2
Number of Nearest Neighbors 38 12
Atomic Packing Factor

*assume hard spheres

a3
1
a
6
0.52 .
Volume of atoms in unit cell* y
APF = - “
Volume of unit cell d




Theoretical Density, p

Mass of Atoms in Unit Cell

Density = =
CHsIty P Total Volume of Unit Cell
_ _nA
P VeNy
where n = number of atoms/unit cell

A = atomic weight
V- = Volume of unit cell = a° for cubic

N, = Avogadro’ s number
= 6.023 x 10%* atoms/mol

.
Chapter 3-



Theoretical Density, p

« Ex: Cr (BCC)
A =52.00 g/mol

R=0.125 nm
n=2

a=4RN3 =0.2887 nm

atoms ‘
. ~~ <
unit cel 2zl Mol | Ptheoretical — 7.18 Q/Cm3
p = — 3
a3 6.023x1023 Pactuar = 719 glom
volume ¥ v atoms
unit cell

mOI Chapter 3 -




Characteristics of Selected Elements at 20C
At. Weight Density  crystal  Atomic radius

Element Symbol (amu) (g/cm3) Structure (nm)

Aluminum Al 26.98 2.71 FCC 0.143

Argon Ar 3995 = - e e

Barium Ba 137.33 3.5 BCC 0.217
Beryllium Be 9.012 1.85 HCP 0.114

Boron B 10.81 2.34 Rhomb  ------ ¢:;I:t‘?,°c': ‘;‘fggc_
Bromi ne Br 79 .90 """"""""" teristi,cs of
Cadmium Cd 112.41 8.65 HCP 0.149 Selected
Calcium  Ca 40.08 1.55 FCC 0.197 iomens
Carbon C 12.011 2.25 Hex 0.071 cover,
Cesium Cs 132.91 1.87 BCC 0.265 Calisterte.
Chlorine Cl 35645 W - e e

Chromium Cr 52.00 7.19 BCC 0.125

Cobalt Co 58.93 8.9 HCP 0.125

Copper Cu 63.55 8.94 FCC 0.128

Flourine F 19.00 @ - e eeeeee

Gallium Ga 69.72 5.90 Ortho. 0.122
Germanium Ge 72.59 5.32 Dia. cubic 0.122

Gold Au 196.97 19.32 FCC 0.144

Helium He 4003 = e emeee-
Hydrogen H 1008  -—- - - Chapter 3-15



DENSITIES OF MATERIAL CLASSES

Graphite/ :
: Metals/ ) Composites/
Pmetals Pceramics Ppolymers Alloys gera_mlcsl Polymers ~*TDO°
30 emicond
Why? S— Based on data in Table B1, Callister
20— o *GFRE, CFRE, & AFRE are Glass,
Metals have... .?;’,!i‘g..‘{fm Carbon, & Aramid Fiber-Reinforced
° c|ose-packing Epoxy composites (values bas ed on
. . _ 60% volume fraction of alignhed fibers
(metalllc bondlng) 10— :S'u"’ﬁ'i’- Mo in an epoxy matrix).
*large atomicmass &~ =1g-},?'?z'?nc
. — * Zirconhia
Ceramics have... € s
: Q 4 sTitankim A oxide
e less dense packing ¥ 2 Diamond
. — ynitride
(covalent bondlng) 9 3« Aluminum . glass-s da *Glass fibers
$Sihcon = *PTFE

* often lighter elements ~ 22—
Polymers have...
e poor packing 1
(often amorphous)
e lighter elements (C,H,0) ;5

Composites have... 0.4—

. . 0.3 —
e intermediate values Data from Table B1, Callister 6e. @
Chapter 3-16

*GFRE*
s aﬁ)on fibers
FRE*

* Magnesium * Graphite
Silicone .
|
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POLYMORPHISM & ALLOTROPY

* Some materials may exist in more than one crystal
structure, this is called polymorphism.

e If the material is an elemental solid, it 1s called allotropy.
An example of allotropy is carbon, which can exist as
diamond, graphite, and amorphous carbon.

" 4

\

Diamond
Graphite

Chapter 3-




Polymorphism

e Two or more distinct crystal structures for the same
material (allotropy/polymorphism)

iron system

titani
1 amum. liquid
o, p-Ti
—— 1538°C
carbon BCC
diamond, graphite —— 1394°C
rec
—1— 912°C
e

37
Chapter 3-



Crystallographic Points, Directions, and
Planes

e Iti1s necessary to specily a particular point/location/atom/
direction/plane in a unit cell

 We need some labeling convention. Simplest way i1s to use
a 3-D system, where every location can be expressed using

three numbers or indices.
4

-

B

X Chapter 3-

—a,b, anda, 3,y




Point Coordinates — Atom Positions

111 Point coordinates for unit cell
ct--- ( =>4 center are
AR al2,bl2, c/2 R RD)
i sy

Point coordinates for unit cell

i corner are 111
tz E\fZC
’
: Translation: integer multiple of
. lattice constants = identical
b y position in another unit cell

A4
Chapter 3-



Crystallographic Directions

Crystallographic direction is a vector [uvw]

Algorithm

1. Vector repositioned (if necessary) to pass
through origin. (Always passes thru origin 000)
2. Read off projections in terms of
unit cell dimensions a, b, and ¢
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas

[uvw]

X
ex:1,0,% => 2,0,1 => [201]

-1,1,1 => [711] where overbar represents a
negative index

families of directions <uvw>
Chapter 3-



Linear Density

Number of atoms

* Linear Density of Atoms =LD = length of direction vector

[110]

ex: linear density of Al in [110]

direction
a=0.405 nm
# atoms
a \ 2 —1
= LD = = = (3.5 nm
length —>Vea

Chapter 3-



origin at point O

Crystallographic Planes
4 /(l 10) Plane referenced to the

(001) Plane referenced to

z
4 / the origin at point O
L
K
I
l
1
[
,’ / Other e\q/uivalent
04. _____ =Y { (110) planes
/1 (b)
s | z
A | A (1 11) Plane referenced to
,l the origin at point O
[
| Other equivalent "
/" ———— (001) planes I
| ;'
! !
__________ Y

N Other equivalent /
(111) planes

(a)
/
Xy/
(c)
Chapter 3-
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Crystallographic Planes

e Miller Indices: Reciprocals of the (three) axial
intercepts for a plane, cleared of fractions & common
multiples. All parallel planes have same Miller indices.

e Algorithm

If plane passes thru origin, translate

Read off intercepts of plane with axes in terms of a, b, ¢
Take reciprocals of intercepts

Reduce to smallest integer values

Enclose in parentheses, no commas i.e., (/1kl)

Chapter 3-



Crystallographic Points, Directions, and
Planes

e Crystallographic direction is a vector [uvw]
— Always passes thru origin 000
— Measured in terms of unit cell dimensions a, b, and ¢
— Smallest integer values

e Planes with Miller Indices (hkl)

— If plane passes thru origin, translate

— Length of each planar intercept in terms of the lattice
parameters a, b, and c.

— Reciprocals are taken
— If needed multiply by a common factor for integer

representation
Chapter 3-



Crystallographic Planes

example

1. Intercepts

2. Reciprocals
3. Reduction

4. Miller Indices
example

1. Intercepts

2. Reciprocals
3. Reduction

4. Miller Indices

a b
1 1
1/1 1/1
1 1
(110)

a b
1/2 00
12 1/
2 0
2 0
(100)

C

"N

Y

"
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Crystallographic Planes

f

example a b C C
1.  Intercepts 1/2 1 3/4
2. Reciprocals 12 11 1/% \
2 1 4/3 "y
3. Reduction 6 3 4 a b
X

4. Miller Indices (634)

Family of Planes {hkl}

Ex: {100} = (100), (010), (001), (100), (010), (001)

Chapter 3-



Crystallographic Planes

We want to examine the atomic packing of
crystallographic planes

Iron foil can be used as a catalyst. The atomic
packing of the exposed planes is important.

a) Draw (100) and (111) crystallographic planes
for Fe.

b) Calculate the planar density for each of these planes.

Chapter 3-



Planar Density of (100) lron

Solution: At T <912°C iron has the BCC structure.

A

2D repeat unit

(o) QOO 4B
Q00 =
0000
0000
Adapted from Fig. 3.2(c), Callister 7e. Radius ofiron R = 0.1241 nm
atoms
2D repeat unit ~ 1 :
Planar Density =7~ = 5 = 12.1 atomzs =11 2 x 1019 atOFZTlS
area _~4 ﬁR nm m
2D repeat unit 3
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Section 3.16 - X-Ray Diffraction

Electromagnetic Spectrum

1Hz 1KkHz 1MHz Frequency (Hz)

1.0 10 10° 10° 102 10®  10® 102 10%

et ]Inhareli IUltlraviolletI RN

: FM,TV —
Long Radio Waves Microwaves Visible Light

AM  short Radio Waves X-Rays

A IS [ (N S N N SN SN S (N N N N N

10° 108 103 1.0 102 10 10° 1012 1013
1 km Tm Tum 1nm

Wavelength, 2 (m)

Gamma Rays

Diffraction gratings must have spacings comparable to the
wavelength of diffracted radiation.

Can’ t resolve spacings < A
Spacing is the distance between parallel planes of atoms.

s (B
Chapter 3-



X-RAYS TO CONFIRM CRYSTAL STRUCTURE

* Incoming X-rays diffract from crystal planes.

p
)
+ %,
%
%o Y -
® o7,
extra <,
distance N

0

travelled
by wave

e Measurement of:
Critical angles, 6,
for X-rays provide
atomic spacing, d.

o Q@(
&."'\ Q
Q7
O )
reflections must
&V beinphase to
detect signal

Adapted from Fig.

\6 3.2W, Callister 6Ge.
9 . .
spacing
' d between
4 planes
Py . A 4
X-ray A
intensity d=n\/2sind¢
(from
detector)
0

|
>
|

e W
Chapter 3- 20



SUMMARY

 Atoms may assemble into crystalline or
amorphous structures.

 We can predict the density of a material,
provided we know the atomic weight, atomic
radius, and crystal geometry (e.g., FCC,
BCC, HCP).

Chapter 3- 23



